MHB Distance Between a Subspace and a Vector

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Subspace Vector
Click For Summary
The discussion focuses on calculating the distance between a vector \(v\) and a subspace \(U\) in a Euclidean space \(V\). The key method involves finding the length of the projection of \(v\) onto the orthogonal complement \(U^\perp\). An orthogonal basis for \(U^\perp\) can be established using the Gram-Schmidt orthogonalization procedure. An example is provided where the distance is calculated as \(d=\sqrt{30}\) after determining the orthogonal basis. The final confirmation of the calculations reinforces the accuracy of the method used.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

I just want to confirm my answer to this question.

Question:

Find the distance between a vector \(v\) and a subspace \(U\) in a Euclidean space \(V\).

Answer:

Here what we have to find essentially, is the length of the projection of \(v\) to the orthogonal compliment, \(U^\perp\) of \(U\). Hence if we can find a orthogonal basis of \(U^\perp\); say \(\{e_1,\,e_2,\,\cdots,\,e_n\}\) then the distance is given by,

\[d=\left|\frac{v.e_1}{e_1. e_1}e_1+\cdots+\frac{v.e_n}{e_n. e_n}e_n\right|\]

To find the orthogonal basis we might want to use the Gram-Schimdt orthogonalization procedure.

Let us take an example. Let \(v=(1,\,2,\,3,\,4,\,5)\) and the subspace \(U\subset \mathbb{R}^5\) given by,

\[x_1+2x_2+3x_3+4x_4=0\]

\[5x_1+6x_2+7x_3+8x_4=0\]

Therefore we have that \(v_1=(1,\,2,\,3,\,4,\,0)\mbox{ and }v_2=(5,\,6,\,7,\,8,\,0)\) as linearly independent vectors of \(U^\perp\). Now using the Gram-Schimdt orthogonalization procedure we get,

\[e_1=v_1=(1,\,2,\,3,\,4,\,0)\]

\[e_2=v_2-\frac{v_2 . e_1}{e_1. e_1}e_1=\left(\frac{8}{3},\,\frac{4}{3},\,0,\,-\frac{4}{3},\,0\right)\]

Now that we have found a orthogonal basis for \(U^\perp\) we can find the distance as,

\[d=\left|\frac{v.e_1}{e_1. e_1}e_1+\frac{v.e_2}{e_2. e_2}e_2\right|=|e_1|=\sqrt{30}\]

Am I correct? :)
 
Physics news on Phys.org
Yup. All correct.
 
I like Serena said:
Yup. All correct.

Wow, that's great. I have finally understood something. Thanks very much for the confirmation. :)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K