MHB Distance Between Intersection Points of Bisectors & Medians in Right Triangle

Click For Summary
SUMMARY

The discussion focuses on calculating the distance between the intersection points of angle bisectors and medians in a right triangle with legs measuring 9 cm and 12 cm. The radius of the inscribed circle is calculated using the formula \( r = \frac{(a + b - c)}{2} \), where \( a \) and \( b \) are the legs and \( c \) is the hypotenuse. The coordinates of the inscribed circle center, which is also the intersection point of the angle bisectors, are determined to be \( (r, r) \). The intersection point of the medians is located \( \frac{2}{3} \) of the way from the origin to the midpoint of the hypotenuse, allowing for the distance to be computed using standard distance formulas.

PREREQUISITES
  • Understanding of right triangle properties
  • Familiarity with angle bisectors and medians
  • Knowledge of coordinate geometry
  • Ability to apply distance formulas in a Cartesian plane
NEXT STEPS
  • Study the properties of angle bisectors in triangles
  • Learn how to calculate the coordinates of triangle centroids and midpoints
  • Explore the concept of inscribed circles and their properties
  • Practice using distance formulas in coordinate geometry
USEFUL FOR

Mathematics students, geometry enthusiasts, and educators seeking to deepen their understanding of triangle properties and coordinate geometry applications.

Elena1
Messages
24
Reaction score
0
The legs of chateti of a right triangle are 9 and 12 cm. Find the distance between the intersection point of bisectors and the point of intersection of the medians
 
Mathematics news on Phys.org
Elena said:
The legs of chateti of a right triangle
It should say simply "legs", or "catheti". See Wikipedia for terminology.

Elena said:
Find the distance between the intersection point of bisectors and the point of intersection of the medians
Do you mean angle bisectors or perpendicular bisectors?

Also, what are your thoughts about the solution? What topic does this problem belong to, e.g., coordinate geometry, circumscribed circle, etc.?
 
I mean the distance between the intersection point of bisectors and the intersection point of medians
 
Elena said:
I mean the distance between the intersection point of bisectors and the intersection point of medians

Evgeny.Makarov said:
Do you mean angle bisectors or perpendicular bisectors?

Also, what are your thoughts about the solution? What topic does this problem belong to, e.g., coordinate geometry, circumscribed circle, etc.?
...
 
Evgeny.Makarov said:
...

я не знаю
 
Вы имеете в виду биссектрисы? По-английски они называются angle bisectors, в то время как серединные перпендикуляры называются perpendicular bisectors.

If you mean angle bisectors, then Wikipedia says the radius of the inscribed circle is $r=(a+b-c)/2$ where $a$ and $b$ are legs and $c$ is the hypotenuse. Thus, if we arrange the triangle so that its right angle is in the origin and legs go along the $x$ and $y$ axes, respectively, then the coordinates if the inscribed circle center (which is also the intersection point of angle bisectors) will be $(r,r)$. The hypotenuse ends will have coordinates $(12,0)$ and $(0,9)$, so it is possible to find the middle $D$ of that segment. The intersection point of medians lies $2/3$ of the way from $(0,0)$ to $D$. This way you can find the coordinates of the intersection of medians. Then find the distance according to the usual formula for two points with known coordinates.
 
Evgeny.Makarov said:
Вы имеете в виду биссектрисы? По-английски они называются angle bisectors, в то время как серединные перпендикуляры называются perpendicular bisectors.

If you mean angle bisectors, then Wikipedia says the radius of the inscribed circle is $r=(a+b-c)/2$ where $a$ and $b$ are legs and $c$ is the hypotenuse. Thus, if we arrange the triangle so that its right angle is in the origin and legs go along the $x$ and $y$ axes, respectively, then the coordinates if the inscribed circle center (which is also the intersection point of angle bisectors) will be $(r,r)$. The hypotenuse ends will have coordinates $(12,0)$ and $(0,9)$, so it is possible to find the middle $D$ of that segment. The intersection point of medians lies $2/3$ of the way from $(0,0)$ to $D$. This way you can find the coordinates of the intersection of medians. Then find the distance according to the usual formula for two points with known coordinates.
could you solve my problem please i don`t understand the drawing
 
Here is a picture that uses notations from post #7.

https://www.physicsforums.com/attachments/3563._xfImport

Elena said:
could you solve my problem please
No, according to rule 11 http://mathhelpboards.com/rules/ you are supposed to show some effort.
 

Attachments

  • incircle.png
    incircle.png
    3.2 KB · Views: 126

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K