MHB Distance between points question

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Points
Click For Summary
To find a point A on the y-axis from which the line segment BC (between points B(1,3) and C(2,6)) is seen at a 90-degree angle, the slopes of the lines from A to B and A to C must be negative reciprocals. The correct approach involves setting up the equation based on the slopes, leading to the quadratic equation y^2 - 9y + 20 = 0, which gives solutions y = 4 and y = 5. The initial confusion arose from a misinterpretation of the geometric relationship, as the drawing did not maintain the same scale on both axes, affecting the perceived angle. The key takeaway is that the lines from point A to B and C must be perpendicular for the angle to be 90 degrees.
Yankel
Messages
390
Reaction score
0
Hello

I have two points: B(1,3) and C(2,6). I need to find a point A on the y-axis, from which BC is "seen" at an angle of 90 degrees.

I tried using Pythagoras theorem and got:

\[y^{2}-6y+10=y^{2}-12y+40+10\]

but it doesn't give the correct answer, which is (0,5) or (0,4).

What am I doing wrong here ?

Thank you in advance !
 
Mathematics news on Phys.org
Yankel said:
from which BC is "seen" at an angle of 90 degrees.

Can you make that precise?
 
Yankel said:
Hello

I have two points: B(1,3) and C(2,6). I need to find a point A on the y-axis, from which BC is "seen" at an angle of 90 degrees.

I tried using Pythagoras theorem and got:

\[y^{2}-6y+10=y^{2}-12y+40+10\]

but it doesn't give the correct answer, which is (0,5) or (0,4).

What am I doing wrong here ?

Thank you in advance !

Here's what I would do:

Let the requested point be $P(0,y)$. Now we require segment $\overline{BP}$ to be normal to segment $\overline{CP}$, and so we require (given the product of the slopes of normal lines is -1):

$$\frac{3-y}{1-0}=\frac{0-2}{6-y}$$

$$(y-3)(y-6)=-2$$

$$y^2-9y+20=0$$

$$(y-4)(y-5)=0$$

Thus:

$$y\in\{4,5\}$$
 
when I draw it, it looks like BP is normal to BC and not CP. This is why my answer is wrong. How could you tell which line is normal to which ?
 
Yankel said:
when I draw it, it looks like BP is normal to BC and not CP. This is why my answer is wrong. How could you tell which line is normal to which ?

The line segments from our point $P$ on the $y$-axis to the two given points must be normal to each other. :D
 
While I was drawing, I didn't keep the same scale on the x-axis and y-axis, and this is why in my drawing the angle did not look like 90 degrees. I understand the error now.

Thank you !
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K