MHB Divanshu's question via email about a volume by revolution

Click For Summary
The discussion focuses on calculating the volume of a solid formed by rotating a region around a line that serves as the lower boundary. It is noted that the volume remains unchanged if the entire region is shifted down by 4 units, allowing for rotation around the x-axis instead. The formula for the volume of revolution is provided, specifically using the integral V = ∫_a^b π[f(x)]² dx. The specific volume calculation presented is V = ∫_0^8 π(x² + 4)² dx. The approach and calculations are confirmed as correct.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5635

Here is a graph of the region to be rotated. Notice that it is being rotated around the same line that is the lower boundary.

View attachment 5636

The volume will be exactly the same if everything is moved down by 4 units, with the advantage of being rotated around the x-axis. So using the rule for finding the volume of a solid formed by rotating $\displaystyle \begin{align*} f(x) \end{align*}$ around the x axis: $\displaystyle \begin{align*} V = \int_a^b{ \pi\,\left[ f(x) \right] ^2\,\mathrm{d}x } \end{align*}$ the volume we want is $\displaystyle \begin{align*} V &= \int_0^8{\pi\, \left( x^2 + 4 \right) ^2 \,\mathrm{d}x } \end{align*}$.
 

Attachments

  • volume question.JPG
    volume question.JPG
    12.5 KB · Views: 135
  • volume graph.JPG
    volume graph.JPG
    44.6 KB · Views: 133
Mathematics news on Phys.org
Prove It said:
https://www.physicsforums.com/attachments/5635

Here is a graph of the region to be rotated. Notice that it is being rotated around the same line that is the lower boundary.

https://www.physicsforums.com/attachments/5636

The volume will be exactly the same if everything is moved down by 4 units, with the advantage of being rotated around the x-axis. So using the rule for finding the volume of a solid formed by rotating $\displaystyle \begin{align*} f(x) \end{align*}$ around the x axis: $\displaystyle \begin{align*} V = \int_a^b{ \pi\,\left[ f(x) \right] ^2\,\mathrm{d}x } \end{align*}$ the volume we want is $\displaystyle \begin{align*} V &= \int_0^8{\pi\, \left( x^2 + 4 \right) ^2 \,\mathrm{d}x } \end{align*}$.
This is correct.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K