Dividing Line Segments into Four Equal Parts using Midpoint Formula

  • Context: MHB 
  • Thread starter Thread starter nycmathdad
  • Start date Start date
  • Tags Tags
    Formula
Click For Summary
SUMMARY

The discussion focuses on dividing line segments into four equal parts using the Midpoint Formula. Participants detail the process of applying the Midpoint Formula three times to find the necessary points for segments defined by coordinates such as (1, -2) and (4, -1), as well as (-2, -3) and (0, 0). The method involves calculating midpoints iteratively to achieve the desired divisions, ensuring each segment maintains equal length. The distance formula is also referenced to clarify segment lengths during the calculations.

PREREQUISITES
  • Understanding the Midpoint Formula for coordinate geometry
  • Familiarity with the Distance Formula for calculating lengths between points
  • Basic knowledge of coordinate systems and plotting points
  • Ability to perform arithmetic operations with fractions and square roots
NEXT STEPS
  • Practice using the Midpoint Formula with various coordinate pairs
  • Explore the Distance Formula to calculate lengths of line segments
  • Learn about interpolation techniques in coordinate geometry
  • Investigate applications of the Midpoint Formula in computer graphics
USEFUL FOR

Students studying geometry, educators teaching coordinate systems, and anyone interested in mathematical problem-solving involving line segments and midpoints.

nycmathdad
Messages
74
Reaction score
0
55. Use the Midpoint Formula three times to find the three points that divide the line segment joining (x_1, y_1) and (x_2, y_2) into four equal parts.

56. Use the result of Exercise 55 to find the points that divide each line segment joining the given points into four equal parts.

(a) (x_1, y_1) = (1, −2)

(x_2, y_2) = (4, −1)

(b) (x_1, y_1) = (−2, −3)

(x_2, y_2) = (0, 0)

Looking for hints to solve 55 and 56.
 
Mathematics news on Phys.org
Beer soaked ramblings follow.
nycmathdad said:
55. Use the Midpoint Formula three times to find the three points that divide the line segment joining (x_1, y_1) and (x_2, y_2) into four equal parts.

56. Use the result of Exercise 55 to find the points that divide each line segment joining the given points into four equal parts.

(a) (x_1, y_1) = (1, −2)

(x_2, y_2) = (4, −1)

(b) (x_1, y_1) = (−2, −3)

(x_2, y_2) = (0, 0)

Looking for hints to solve 55 and 56.
Interpolate Country Boy's explanation at
https://mathhelpboards.com/threads/midpoint-formula.28521/#post-124867
 
The three points needed are the midpoint, p, of the given interval and the midpoint of the two intervals having one of the original endpoint and p as endpoints and the other original endpoint and p as endpoints.

For example, if an interval has endpoints (0, 0) and (2, 2), of length $\sqrt{2}$, has midpoint (1, 1). The midpoint of the interval from (0, 0) to (1, 1) is (1/2, 1/2) and the mid point of (1, 1) to (2, 2) is (3/2, 3/2). The four intervals from (0, 0) to (1/2, 1/2), from (1/2, 1/2) to (1, 1), from (1, 1) To (3/2, 3/2), and from (3/2, 3/2) all have length $\frac{\sqrt{2}}{2}$.
 
Country Boy said:
The three points needed are the midpoint, p, of the given interval and the midpoint of the two intervals having one of the original endpoint and p as endpoints and the other original endpoint and p as endpoints.

For example, if an interval has endpoints (0, 0) and (2, 2), of length $\sqrt{2}$, has midpoint (1, 1). The midpoint of the interval from (0, 0) to (1, 1) is (1/2, 1/2) and the mid point of (1, 1) to (2, 2) is (3/2, 3/2). The four intervals from (0, 0) to (1/2, 1/2), from (1/2, 1/2) to (1, 1), from (1, 1) To (3/2, 3/2), and from (3/2, 3/2) all have length $\frac{\sqrt{2}}{2}$.

Interesting. By the length sqrt{2}, you mean the distance between two given points. This is found using the distance formula for points. True?
 
Yes, although I miswrote. I was first thinking of (0, 0) to (1, 1) which does have length $\sqrt{2}$. But then I changed to (0, 0) to (2, 2) which is twice as long: $\sqrt{(2- 0)^2+ (2- 0)^2}= \sqrt{4+ 4}= \sqrt{4(2)}= 2\sqrt{2}$.
 
Country Boy said:
Yes, although I miswrote. I was first thinking of (0, 0) to (1, 1) which does have length $\sqrt{2}$. But then I changed to (0, 0) to (2, 2) which is twice as long: $\sqrt{(2- 0)^2+ (2- 0)^2}= \sqrt{4+ 4}= \sqrt{4(2)}= 2\sqrt{2}$.

Ok. Interesting.
 

Similar threads

Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K