MHB Dividing Line Segments into Four Equal Parts using Midpoint Formula

  • Thread starter Thread starter nycmathdad
  • Start date Start date
  • Tags Tags
    Formula
AI Thread Summary
To divide a line segment into four equal parts, the Midpoint Formula is applied three times to find the necessary points. For the segments defined by the points (1, -2) and (4, -1), as well as (-2, -3) and (0, 0), the midpoints are calculated to determine the division points. The discussion highlights the importance of understanding the distance between points, which is derived from the distance formula. The calculations demonstrate how to find the midpoints of each segment and subsequently the points that divide the segments into equal lengths. This method effectively allows for precise division of line segments in coordinate geometry.
nycmathdad
Messages
74
Reaction score
0
55. Use the Midpoint Formula three times to find the three points that divide the line segment joining (x_1, y_1) and (x_2, y_2) into four equal parts.

56. Use the result of Exercise 55 to find the points that divide each line segment joining the given points into four equal parts.

(a) (x_1, y_1) = (1, −2)

(x_2, y_2) = (4, −1)

(b) (x_1, y_1) = (−2, −3)

(x_2, y_2) = (0, 0)

Looking for hints to solve 55 and 56.
 
Mathematics news on Phys.org
Beer soaked ramblings follow.
nycmathdad said:
55. Use the Midpoint Formula three times to find the three points that divide the line segment joining (x_1, y_1) and (x_2, y_2) into four equal parts.

56. Use the result of Exercise 55 to find the points that divide each line segment joining the given points into four equal parts.

(a) (x_1, y_1) = (1, −2)

(x_2, y_2) = (4, −1)

(b) (x_1, y_1) = (−2, −3)

(x_2, y_2) = (0, 0)

Looking for hints to solve 55 and 56.
Interpolate Country Boy's explanation at
https://mathhelpboards.com/threads/midpoint-formula.28521/#post-124867
 
The three points needed are the midpoint, p, of the given interval and the midpoint of the two intervals having one of the original endpoint and p as endpoints and the other original endpoint and p as endpoints.

For example, if an interval has endpoints (0, 0) and (2, 2), of length $\sqrt{2}$, has midpoint (1, 1). The midpoint of the interval from (0, 0) to (1, 1) is (1/2, 1/2) and the mid point of (1, 1) to (2, 2) is (3/2, 3/2). The four intervals from (0, 0) to (1/2, 1/2), from (1/2, 1/2) to (1, 1), from (1, 1) To (3/2, 3/2), and from (3/2, 3/2) all have length $\frac{\sqrt{2}}{2}$.
 
Country Boy said:
The three points needed are the midpoint, p, of the given interval and the midpoint of the two intervals having one of the original endpoint and p as endpoints and the other original endpoint and p as endpoints.

For example, if an interval has endpoints (0, 0) and (2, 2), of length $\sqrt{2}$, has midpoint (1, 1). The midpoint of the interval from (0, 0) to (1, 1) is (1/2, 1/2) and the mid point of (1, 1) to (2, 2) is (3/2, 3/2). The four intervals from (0, 0) to (1/2, 1/2), from (1/2, 1/2) to (1, 1), from (1, 1) To (3/2, 3/2), and from (3/2, 3/2) all have length $\frac{\sqrt{2}}{2}$.

Interesting. By the length sqrt{2}, you mean the distance between two given points. This is found using the distance formula for points. True?
 
Yes, although I miswrote. I was first thinking of (0, 0) to (1, 1) which does have length $\sqrt{2}$. But then I changed to (0, 0) to (2, 2) which is twice as long: $\sqrt{(2- 0)^2+ (2- 0)^2}= \sqrt{4+ 4}= \sqrt{4(2)}= 2\sqrt{2}$.
 
Country Boy said:
Yes, although I miswrote. I was first thinking of (0, 0) to (1, 1) which does have length $\sqrt{2}$. But then I changed to (0, 0) to (2, 2) which is twice as long: $\sqrt{(2- 0)^2+ (2- 0)^2}= \sqrt{4+ 4}= \sqrt{4(2)}= 2\sqrt{2}$.

Ok. Interesting.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top