High School Division by Zero: Is it Defined?

Click For Summary
SUMMARY

The discussion centers on the mathematical implications of division by zero, specifically in the context of the expression x2 = x3 / x. It is established that division by zero is undefined, leading to a removable singularity at x=0. Participants emphasize the importance of specifying conditions such as "x ≠ 0" when presenting mathematical expressions to avoid ambiguity. The conversation highlights that while some mathematical statements may seem self-evident, clarity in defining domains is crucial for accurate communication.

PREREQUISITES
  • Understanding of algebraic expressions and their domains
  • Familiarity with the concept of singularities in mathematics
  • Knowledge of continuity and limits in calculus
  • Basic principles of mathematical notation and conventions
NEXT STEPS
  • Study the concept of removable singularities in calculus
  • Learn about the implications of undefined operations in algebra
  • Explore the importance of domain restrictions in mathematical functions
  • Investigate the role of continuity in mathematical analysis
USEFUL FOR

Mathematicians, educators, students in algebra and calculus, and anyone interested in understanding the nuances of mathematical expressions and their definitions.

dyn
Messages
774
Reaction score
63
Hi.
x2 = x3 / x but x2 is defined for all x and equals zero at x=0 but what happens for x3 / x at x=o ? Is it defined at x=o ? Does it equal zero ? If not what is causing this anomaly ?
Thanks
 
Mathematics news on Phys.org
N/0 is undefined regardless of N. If you assume otherwise, you can prove n=m where n and m are any arbitrary and different numbers.
 
dyn said:
Hi.
x2 = x3 / x but x2 is defined for all x and equals zero at x=0 but what happens for x3 / x at x=o ? Is it defined at x=o ? Does it equal zero ? If not what is causing this anomaly ?
Thanks
##x \longmapsto x ## is everywhere continuous, ##x\longmapsto \dfrac{x^3}{x^2}## is not; at ##x=0\,.##

Although this is a removable singularity, it still is one, a gap. Algebraically division by zero isn't defined, simply because zero isn't part of any multiplicative group. The question never arises. It's like discussing the height of an apple tree on the moon.
 
  • Like
Likes jim mcnamara
When people write ## x = \frac {x^3}{x}## with no restriction that ## x \ne 0 ##, they are being (understandably) careless. The proper way is to keep track of all those divisions by zero and make sure that the results are still legitimate when the simplified equations are used. Otherwise, rule those points out. In physical applications, the continuity and nice behavior of the reduced formula, ##x##, at 0 makes it likely to also be valid at that point (##x = 0##).
 
So x = x3 / x2 is not a correct statement on its own ? It needs the addition of the statement " x not equal to 0 " ?
I have seen the following statement in textbooks " xn / xm = xn-m " with no mention of " x not equal to 0 ". Are they just being lazy and missing out the " x not equal to 0 " statement ?
 
dyn said:
So x = x3 / x2 is not a correct statement on its own ? It needs the addition of the statement " x not equal to 0 " ?
Strictly, yes. But as it isn't defined for ##x=0## it is implicitly clear. As long as you don't want to write unnecessary additional lines, just leave it. Who writes ##x\geq 0## if he uses ##\sqrt{x}\,?## This is simply self-evident, resp. clear by context. But logically, the domain of ##x## needs to be mentioned in general, such that we know what the function really is. But in your post it was pretty clear what you meant even without it.
I have seen the following statement in textbooks " xn / xm = xn-m " with no mention of " x not equal to 0 ". Are they just being lazy and missing out the " x not equal to 0 " statement ?
See above. It is simply not necessary as long as you don't write a book on logic. It's like mocking about a Pizza guy not telling you it's hot. However, if you talk about specific functions, you better say where and how they are defined. E.g. you could define
$$f(x) = \begin{cases}\dfrac{x^3}{x^2} \,&,\, x\neq 0 \\ 0\,&\,,x=0\end{cases}$$
or simply
$$
f(x)= \dfrac{x^3}{x^2}\; , \;x\neq 0
$$
which will be two different functions. So as always with written things, it depends on what you want to express. In post #1 and the example you gave it isn't necessary. Mocking about it is nit-picking.
 
Thank you for your replies.
I want to point out that I wasn't mocking about it ; I just wanted clarity. A lot of time some parts of maths seem like nit-picking to me but as plenty of people on here point out the finer points can be important.
 
fresh_42 said:
Who writes ##x\geq 0## if he uses ##\sqrt x##? This is simply self-evident, resp. clear by context.
I think that should be stated more carefully. Certainly, if ##x = -y^2+y+5## one would not use ##\sqrt {x}## without specifying that ##-y^2+y+5 = x \ge 0 ## and determining what the corresponding valid values of ##y## are.
 

Similar threads

  • · Replies 47 ·
2
Replies
47
Views
6K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K