MHB Why is dividing by zero impossible in math?

Click For Summary
SUMMARY

Division by zero is mathematically impossible due to the fundamental properties of multiplication and limits. When attempting to express division by zero, such as in the case of a/0, it leads to the conclusion that a = 0 * c, which is false for any non-zero a. This results in the term being classified as "undefined." Conversely, 0/0 is considered "undetermined" because it can equal any number c. Understanding these distinctions is crucial when evaluating limits in calculus, particularly when both the numerator and denominator approach zero.

PREREQUISITES
  • Basic understanding of arithmetic operations, specifically division.
  • Familiarity with algebraic expressions and equations.
  • Knowledge of limits in calculus.
  • Understanding of the concept of undefined and indeterminate forms.
NEXT STEPS
  • Study the concept of limits in calculus, focusing on lim_{x→a} f(x)/g(x).
  • Explore the differences between undefined and indeterminate forms in mathematics.
  • Learn about the implications of division by zero in various mathematical contexts.
  • Investigate real-world examples that illustrate the concept of division by zero.
USEFUL FOR

Students, educators, and anyone interested in understanding the foundational principles of mathematics, particularly in algebra and calculus.

mathdad
Messages
1,280
Reaction score
0
We know division by zero is not possible but what is the math reason why it is impossible to divide by zero?
 
Mathematics news on Phys.org
Let's say you wanted to do 5/0, then you're asking "how many 0's are there in 5?"

Well, try adding up 0's until you get to 5...

Hang on, 0 + 0 = 0... If I keep adding 0 we still stay at 0...

How can we ever possibly get to 5?
 
Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.

In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.
 
Great information.

- - - Updated - - -

Say there are 5 people in a particular classroom. They came to class without a pencil. If the principal walks into the classroom and tells me to distribute one pencil per student but I have no pencils, no one will get a pencil. How can I divide a number by nothing? So, number ÷ nothing = undefined.
 

Similar threads

  • · Replies 47 ·
2
Replies
47
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 40 ·
2
Replies
40
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 26 ·
Replies
26
Views
4K
Replies
4
Views
2K