Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Do you think that Fermat had a genuine proof for his last theorem?

  1. Dec 30, 2008 #1
    Yes or No?

    And why do you think that?
  2. jcsd
  3. Dec 30, 2008 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    I think he had a proof he believed in. Whether it was correct or not I couldn't say, but I don't doubt Fermat's belief that he had one.
  4. Dec 30, 2008 #3
    No, definitely not. It was barely proved using the latest mathematical achievements that Fermat definitely didn't know. Unless mathematicians overlooked a simpler possibility of proving it, which I doubt. As far as I know, however, mathematics so advanced was required to prove there were no solutions to the theorem, that Fermat with only beginnings of calculus as his tools could not possibly have a proof.
  5. Dec 30, 2008 #4
    The margins of Fermat's book were not large enough to contain Wiles' proof, so it is likely that that was the proof Fermat had in mind.
  6. Dec 30, 2008 #5
    Are you an idiot or are you joking?
  7. Dec 30, 2008 #6


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    :rofl: Do you really have to ask?
  8. Dec 30, 2008 #7
  9. Dec 30, 2008 #8

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

  10. Dec 30, 2008 #9


    User Avatar
    Science Advisor
    Homework Helper

    Not a chance. Fermat had plenty of time to publish (or at least write) such a proof, but he didn't. Instead, he proved only a special case of FLT... a good indication he changed his mind about the correctness of the proof he had in mind.
  11. Dec 30, 2008 #10
    I don't doubt that he was able to prove it successfully for the first few integers([itex]x^3+y^3 \neq z^3[/itex] etc), but if he believed that he had a general proof, it was probably flawed.
  12. Dec 30, 2008 #11
    nooo way unless there's a really simple proof which is unlikly...
  13. Dec 31, 2008 #12
    Wouldn't he have published it if he did find out the answer?
  14. Dec 31, 2008 #13
    He didn't publish the proofs of his other theorems. And they all turned out to be correct. From what I have heard, he didn't do maths to help the mathematical community. He just did it for fun, and as soon as he got the essence of a problem, he went on to do another one without checking it.

    He often told people he had proofs to problems, and then didn't tell them the proof on purpose. Just so he could watch them fail and feel better about himself.

    So he wouldn't of published it, he never published his proofs.
  15. Dec 31, 2008 #14


    User Avatar
    Science Advisor

    But then why would he publish a proof for a specific case (n= 3?) if he had a "simple" proof that would work for all n?

    I think what happened is what happens to all of us- he thought that the had a brilliant, simple, proof that, when he actually started working out the details, turned out not to work.
  16. Jan 1, 2009 #15
    I tend to favor the theory that his "truly marvelous proof" alluded to was just a proof for the n=3 case. At least in the common english translation it seems easy to interpret Fermat's famous margin note such that the "or in general..." was just an aside and Fermat was not even trying to say he actually had a proof for the general case. I guess that leaves me voting no.
  17. Jan 2, 2009 #16
    The first time i heard about this theorem I was probably 13 or 14 and I mistakenly thought it was saying a^n + b^o cannot equal c^p. for every number bigger than two. I knew that couldn't be true and actually spent a little while proving it wasn't true. Then got into an argument with my teacher telling her she was wrong.
  18. Jan 11, 2009 #17
    Was it possible that he never even claimed he had a general proof? And we just misinterpreted him?
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook