MHB Does a Decimal Representation of the Form 111...1 Exist for Every Prime p > 5?

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $p$ be a prime number exceeding $5$.

Prove that there exists a natural number $k$ such that

each digit in the decimal representation of $pk$ is $1$ :

$pk = 1111...1$
 
Mathematics news on Phys.org
lfdahl said:
Let $p$ be a prime number exceeding $5$.

Prove that there exists a natural number $k$ such that

each digit in the decimal representation of $pk$ is $1$ :

$pk = 1111...1$

because p is a prime > 5 so p is co-prime to 10
hence as per Fermats Little Theorem
we have $10^{p-1} \equiv 1 \pmod {p}$
so a sequence of 9's ( p-1 9's) is divisible by p
further as p is co-prime to 9 so sequence of 1's ( p-1 1's) is divisible by p.
so for k = p-1 this holds. this may hold for k a factor of p-1( for example p = 13 and k = 6).
 
kaliprasad said:
because p is a prime > 5 so p is co-prime to 10
hence as per Fermats Little Theorem
we have $10^{p-1} \equiv 1 \pmod {p}$
so a sequence of 9's ( p-1 9's) is divisible by p
further as p is co-prime to 9 so sequence of 1's ( p-1 1's) is divisible by p.
so for k = p-1 this holds. this may hold for k a factor of p-1( for example p = 13 and k = 6).

Hi, kaliprasad! Thankyou for your participation! Well done :cool:Here is an alternative approach:

\[a_k = \underbrace{1111..1}_{k \: \: positions} = b_k \cdot p +r_k, \: \: \: 0\leq r_k < p.\]By pigeons hole principle for some $n$ and $m$, $n>m$, we have $r_n = r_m$.

It follows, that the difference: $a_n-a_m$ is divisible by $p$.Note, that $a_n-a_m = \underbrace{111..1}_{n-m \: pos.} \underbrace{000..0}_{m \: pos.}=
\underbrace{111..1}_{n-m \: pos.} \cdot 10^m$.Since $10^m$ is not divisible by $p$, $p$ divides $\underbrace{111..1}_{n-m \: pos.}$.
 
lfdahl said:
Hi, kaliprasad! Thankyou for your participation! Well done :cool:Here is an alternative approach:

\[a_k = \underbrace{1111..1}_{k \: \: positions} = b_k \cdot p +r_k, \: \: \: 0\leq r_k < p.\]By pigeons hole principle for some $n$ and $m$, $n>m$, we have $r_n = r_m$.

It follows, that the difference: $a_n-a_m$ is divisible by $p$.Note, that $a_n-a_m = \underbrace{111..1}_{n-m \: pos.} \underbrace{000..0}_{m \: pos.}=
\underbrace{111..1}_{n-m \: pos.} \cdot 10^m$.Since $10^m$ is not divisible by $p$, $p$ divides $\underbrace{111..1}_{n-m \: pos.}$.

Above approach is simpler
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top