Does a Decimal Representation of the Form 111...1 Exist for Every Prime p > 5?

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Prime Representation
Click For Summary
SUMMARY

For every prime number \( p \) greater than 5, there exists a natural number \( k \) such that the product \( pk \) can be expressed in decimal form as a number consisting solely of the digit 1 (i.e., \( pk = 111...1 \)). This conclusion is supported by mathematical proofs discussed in the forum, emphasizing the existence of such \( k \) for any prime \( p > 5 \). Alternative approaches to proving this concept were also shared, highlighting the simplicity of various methods.

PREREQUISITES
  • Understanding of prime numbers and their properties
  • Familiarity with decimal representation of numbers
  • Basic knowledge of number theory
  • Experience with mathematical proofs and problem-solving techniques
NEXT STEPS
  • Research the properties of prime numbers and their distribution
  • Study the concept of decimal representations in number theory
  • Explore various proof techniques in mathematics, such as induction and contradiction
  • Investigate alternative mathematical approaches to number representation
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in the properties of prime numbers and their representations in different numeral systems.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $p$ be a prime number exceeding $5$.

Prove that there exists a natural number $k$ such that

each digit in the decimal representation of $pk$ is $1$ :

$pk = 1111...1$
 
Mathematics news on Phys.org
lfdahl said:
Let $p$ be a prime number exceeding $5$.

Prove that there exists a natural number $k$ such that

each digit in the decimal representation of $pk$ is $1$ :

$pk = 1111...1$

because p is a prime > 5 so p is co-prime to 10
hence as per Fermats Little Theorem
we have $10^{p-1} \equiv 1 \pmod {p}$
so a sequence of 9's ( p-1 9's) is divisible by p
further as p is co-prime to 9 so sequence of 1's ( p-1 1's) is divisible by p.
so for k = p-1 this holds. this may hold for k a factor of p-1( for example p = 13 and k = 6).
 
kaliprasad said:
because p is a prime > 5 so p is co-prime to 10
hence as per Fermats Little Theorem
we have $10^{p-1} \equiv 1 \pmod {p}$
so a sequence of 9's ( p-1 9's) is divisible by p
further as p is co-prime to 9 so sequence of 1's ( p-1 1's) is divisible by p.
so for k = p-1 this holds. this may hold for k a factor of p-1( for example p = 13 and k = 6).

Hi, kaliprasad! Thankyou for your participation! Well done :cool:Here is an alternative approach:

\[a_k = \underbrace{1111..1}_{k \: \: positions} = b_k \cdot p +r_k, \: \: \: 0\leq r_k < p.\]By pigeons hole principle for some $n$ and $m$, $n>m$, we have $r_n = r_m$.

It follows, that the difference: $a_n-a_m$ is divisible by $p$.Note, that $a_n-a_m = \underbrace{111..1}_{n-m \: pos.} \underbrace{000..0}_{m \: pos.}=
\underbrace{111..1}_{n-m \: pos.} \cdot 10^m$.Since $10^m$ is not divisible by $p$, $p$ divides $\underbrace{111..1}_{n-m \: pos.}$.
 
lfdahl said:
Hi, kaliprasad! Thankyou for your participation! Well done :cool:Here is an alternative approach:

\[a_k = \underbrace{1111..1}_{k \: \: positions} = b_k \cdot p +r_k, \: \: \: 0\leq r_k < p.\]By pigeons hole principle for some $n$ and $m$, $n>m$, we have $r_n = r_m$.

It follows, that the difference: $a_n-a_m$ is divisible by $p$.Note, that $a_n-a_m = \underbrace{111..1}_{n-m \: pos.} \underbrace{000..0}_{m \: pos.}=
\underbrace{111..1}_{n-m \: pos.} \cdot 10^m$.Since $10^m$ is not divisible by $p$, $p$ divides $\underbrace{111..1}_{n-m \: pos.}$.

Above approach is simpler
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K