I Does antineutrino capture preferentially form neutrons?

snorkack
Messages
2,388
Reaction score
536
Besides the energetic preference (lower threshold, and more phase space above)?
Antineutrino capture is a weak process, so it can and does change quark flavour.
p+ν=n+e+
is actually
uud+ν=udd+e+
that is
u+ν=d+e+
But given enough energy (like cosmic ray neutrinos), do antineutrinos also get captured:
p+ν=Λ+e+?
Because this is just
udu+ν=uds+e+
that is
u+ν=s+e+
As you see, even though baryon charges match, a process
p+ν=Ξ+e+
would be obstructed, because Ξ has 2 s quarks. But process
p+ν=Λb+e+
should be just
u+ν=b+e+

Obviously these processes are impossible below energy threshold, and above they have a phase space factor. But at high energies, does proton conversion into n vs conversion into any specified flavour of Λ approach ratio of unity, or will any difference remain?
 
Physics news on Phys.org
You would have different CKM matrix elements in there. And ##|V_{ud}| > |V_{us}| > |V_{ub}|##. So I would say yes, ##p+\bar{\nu}\to n+e^+## is preferred over ##p+\bar{\nu}\to \Lambda+e^+## even setting aside phase space constraints.

Edit: changed ##\nu\to\bar{\nu}##, see below
 
Last edited:
  • Like
Likes malawi_glenn
But it should be ##p+\bar{\nu} \rightarrow n+ e^+##.
 
  • Care
  • Like
Likes Dr.AbeNikIanEdL and malawi_glenn
Indeed, I just copied the reactions as noted in the OP (all ##\nu## there should also be ##\bar{\nu}## but the text correctly says antineutrino).
 
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...

Similar threads

Back
Top