Does AxA Equal BxB Imply A Equals B?

Click For Summary
SUMMARY

If AxA = BxB, then A must equal B. This conclusion is derived from the properties of Cartesian products and set equality. Specifically, if (x,y) belongs to AxA, both x and y are elements of A, and similarly for BxB. The discussion confirms that if the sets of all pairs are equal, every element in A is also in B and vice versa, leading to the formal proof that A = B.

PREREQUISITES
  • Understanding of set theory concepts, particularly Cartesian products.
  • Familiarity with the definition of set equality.
  • Knowledge of cardinality and its implications for finite and infinite sets.
  • Basic grasp of Zermelo's theorem and the Axiom of Choice.
NEXT STEPS
  • Study the properties of Cartesian products in set theory.
  • Learn about the implications of cardinality in finite and infinite sets.
  • Research Zermelo's theorem and its relevance to set equality.
  • Explore the Axiom of Choice and its impact on set theory proofs.
USEFUL FOR

Mathematicians, students of set theory, and anyone interested in understanding the formal proofs of set equality and properties of Cartesian products.

Yankel
Messages
390
Reaction score
0
Dear all,

I am trying to prove a simple thing, that if AxA = BxB then A=B.

The intuition is clear to me. If a pair (x,y) belongs to AxA it means that x is in A and y is in A. If a pair (x,y) belongs to BxB it means that x is in B and y is in B. If the sets of all pairs are equal, it means that every x in A is also in B and vice versa.

How do I prove it formally ?

Thank you !
 
Physics news on Phys.org
Yankel said:
Dear all,

I am trying to prove a simple thing, that if AxA = BxB then A=B.

The intuition is clear to me. If a pair (x,y) belongs to AxA it means that x is in A and y is in A. If a pair (x,y) belongs to BxB it means that x is in B and y is in B. If the sets of all pairs are equal, it means that every x in A is also in B and vice versa.

How do I prove it formally ?

Thank you !
This may not be as simple as you think. To start with, what do you mean by saying that two sets are equal? I think that the only way to make sense of that is to interpret "A=B" to mean that A and B have the same cardinality.

If a set $A$ is finite then its cardinality is just the number of elements it contains, denoted by $|A|$. If $|A| = m$ then $|A\times A| = m^2.$ So if $|B| = n$ and $|A\times A| = |B\times B|$ then $m^2 = n^2$, from which it follows that $m=n$. This proves that if "$A\times A = B\times B$" then "$A=B$" in the case of finite sets.

For infinite sets the situation is more complicated. There is a theorem of Zermelo that if $A$ is an infinite set then $|A\times A| = |A|$. From that it follows immediately that if $|A\times A| = |B\times B|$ then $|A| = |B|$. However, the proof of Zermelo's theorem requires the Axiom of Choice. In models of set theory that do not satisfy this axiom, it may be that your result does not hold.
 
Opalg said "
I think that the only way to make sense of that is to interpret "A=B" to mean that A and B have the same
cardinality
."

I disagree. To say that sets A and B are equal means "x\in A if and only if x\in B". If two sets are equal they have the same cardinality but the converse is not true. The sets A= {1, 2, 3} and B= {a, b, c} have the same cardinality but are not equal.
 
HallsofIvy said:
Opalg said "
I think that the only way to make sense of that is to interpret "A=B" to mean that A and B have the same

cardinality
."

I disagree. To say that sets A and B are equal means "x\in A if and only if x\in B". If two sets are equal they have the same cardinality but the converse is not true. The sets A= {1, 2, 3} and B= {a, b, c} have the same cardinality but are not equal.


In that case, the result becomes trivially true. If $A\times A$ and $B\times B$ are just two different names for the same set, then the diagonal elements of $A\times A$ (those of the form $(a,a):a\in A$) are duplicates of the elements of $A$. The same holds for the diagonal elements of $B\times B$. If those diagonals are the same, it follows that the elements of $A$ are the same as the elements of $B$, so $A=B$.
 
Yes, it is. Saying that "A= B", where A and B are sets, means that if x is in A then it is also in B and if y is in B then it is also in A.

If x is a member of A. then (x, x) is in AxA= BxB so x is in B. If y is a member of B then (y, y) is in BxB= AxA so y is in A. Therefore A= B.

It is trivial but that is the question asked.
 
Yankel said:
I am trying to prove a simple thing, that if AxA = BxB then A=B.

The intuition is clear to me. If a pair (x,y) belongs to AxA it means that x is in A and y is in A. If a pair (x,y) belongs to BxB it means that x is in B and y is in B. If the sets of all pairs are equal, it means that every x in A is also in B and vice versa.

How do I prove it formally ?

Thank you !
Let $a\in A$. Then $(a,a)\in A\times A$. Since we’re assuming $A\times A=B\times B$, this means $(a,a)\in B\times B$ and thus $a\in B$. Therefore $A\subseteq B$. The same argument with $A$ and $B$ interchanged shows that $B\subseteq A$. Hence $A=B$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K