Bloch Analysis proof of Theorem 2.5.5 (Definition by recursion)

In summary, the "Bloch Analysis proof of Theorem 2.5.5" establishes a recursive definition that helps in understanding the properties of certain mathematical structures. The proof outlines a systematic approach to define and analyze the behavior of sequences or functions by building upon previously defined elements. It demonstrates how initial conditions and recursive relationships can be utilized to derive comprehensive results, thereby reinforcing the theorem's validity through logical progression and mathematical rigor.
  • #1
BugKingpin
2
1
TL;DR Summary
Not sure why ##N## X H ##\epsilon## C in the existence proof of theorem 2.5.5 in Bloch.
Want to understand how set C contains ##N## x H. H is only defined to be a set with element e and as the domain/range of function k. Is this enough information to conclude that the second set in the cartesian product W is H and not a subset of H?

My thinking is to show that ##N## and H satisfy the definition of sets A and B in an element W = A x B ##\epsilon## C. Then ##N## x H ##\epsilon##. Since 1 ##\epsilon## A so A ##\subseteq N##. If n ##\epsilon## A then s(n) ##\epsilon## A then by Peano Axioms/induction A = ##N##. Then we have to show that B = H. This is the part I am confused by.

Let e ##\epsilon## B. By the set builder rule of C, if (n,y) ##\epsilon## W then (s(n),k(y)) ##\epsilon## W which means if y ##\epsilon## B then k(y) ##\epsilon## B. This means that k(1) ##\epsilon## B and k^{n}(1) ##\epsilon## B. But according to this definition, B is infinite as there are infinite n ##\epsilon## N.

To show that B = H, I either need to use some theorem or show that H and B are subsets of each other. But if I don't know what's in H how do I show that every element of B is also in H and vice versa?
ph_forum2.jpg
ph_forum1.jpg
 
Last edited:
Physics news on Phys.org
  • #2
I don't fully understand your post but I think you've missed the point because it's trivial. ##\mathbb{N}\times H## just simply satisfy that if ##(x,y) \in \mathbb{N}\times H## then ##(s(x),k(y))\in \mathbb{N}\times H##. But s and k by definition return elements of ##\mathbb{N}## and ##H## so of course it's true.

Also we need ##(1,e)\in \mathbb{N}\times H## which is similarly trivial, since we already know they belong to these sets. Hence ##\mathbb{N}\times H## is an element of ##C##
 
  • Like
Likes BugKingpin
  • #3
Office_Shredder said:
I don't fully understand your post but I think you've missed the point because it's trivial. ##\mathbb{N}\times H## just simply satisfy that if ##(x,y) \in \mathbb{N}\times H## then ##(s(x),k(y))\in \mathbb{N}\times H##. But s and k by definition return elements of ##\mathbb{N}## and ##H## so of course it's true.

Also we need ##(1,e)\in \mathbb{N}\times H## which is similarly trivial, since we already know they belong to these sets. Hence ##\mathbb{N}\times H## is an element of ##C##
I really overthought this. So that condition is really just the definition of a function H->H; H contains every element in the domain and range of k and there must be a k(y) in H for every element y in H. So that definition starting with the element e completely populates H as I mentioned above?

Great signature btw. Combinatorics is indeed very subtle.
 
Back
Top