Does each norm on vector space become discontinuous when restricted to S^1?

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Homework Statement
Prove that if two norms on the same vector space are not equivalent, then at least one of them is discontinuous on the unit sphere in the other norm. Does each norm become discontinuous when restricted to the unit sphere of the other?
Relevant Equations
Axioms of norm and Vector space
Dear Everybody,
I am having trouble with last part of this question.
I believe the answer is no. But I have to proof the general case. Here is my work for the problem:
Suppose that we have two distinct norms on the same vector space ##X## over complex numbers. Then there exists no ##K## in the real numbers so that ##\|\cdot\|_2\leq K\|\cdot\|_{1}.## Define a sequence of ##\|\cdot\|_{1}## unit vectors ##(x_n)_{n\in N}## so that ##\|x_n\|_2\geq 3^n.## Now ##\frac{x_1+\frac{1}{3nx_n}}{\|x_1+\frac{1}{3nx_n}\|_{1}}## is a sequence of ##\|\cdot\|_{1}## unit vectors converging to ##x_1## in ##\|\cdot \|_{1}.## But, the norm of the sequences is ##\bigg\|\frac{x_1+\frac{1}{3nx_{n}}}{\|x_1+\frac{1}{nx_{n}}\|_{1}}\bigg\|_{2}\geq \frac{|\frac{1}{3n}\|x_n\|_{2}-\|x_1\|_{2}|}{\|x_1+\frac{1}{3n}x_{n}\|_1}\geq \frac{|\frac{3^{n-1}}{n}-\|x_{1}\|_{2}|}{\|x_1+\frac{1}{3n}x_n\|_1}## does not converge in ##\|x_1\|_2,## so ##\|\cdot\|_2## is discontinuous on the unit sphere of ##\|\cdot\|_1.##
No. If we assume that ##\|\cdot\|_{1}\leq C\|\cdot\|_{2},## then we know that ##\|\cdot\|_{2}## Cauchy sequence converges in ##\|\cdot\|_{1}## and we know that ##\|\cdot\|_{1}## is continuous on the vector space ##X## and if we restricted ##\|\cdot\|_{1}## to the unit sphere.
 
Physics news on Phys.org
cbarker1 said:
Define a sequence of ##\|\cdot\|_{1}## unit vectors ##(x_n)_{n\in N}## so that ##\|x_n\|_2\geq 3^n.##
We can't just define that, since we don't know whether any such sequence exists.
We can define a sequence of ##\|\cdot\|_1## unit vectors, or we can define a sequence of vectors whose ##\|\cdot\|_2## magnitude increases as ##3^n##. But we can't just assume the existence of a sequence that has both properties.
First we'd need to prove that such a sequence exists.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top