[math]X = \dfrac{F}{k} \dfrac{1}{\sqrt{ \dfrac{ 4 \zeta ^2 \omega ^2}{ \omega _n ^2 } + \left ( 1 - \dfrac{ \omega ^2 }{ \omega _n ^2 } \right ) ^2}}[/math]
So given a small variation in m, dm, we get a corresponding change in X by dX:
[math]dX = \dfrac{d}{dm} \left \{ \dfrac{F}{k} \dfrac{1}{\sqrt{ \dfrac{ 4 \zeta ^2 \omega ^2}{ \omega _n ^2 } + \left ( 1 - \dfrac{ \omega ^2 }{ \omega _n ^2 } \right ) ^2}} \right \} ~ dm[/math]
It looks pretty bad but the only variable that contains the mass is [math]\zeta[/math]. Do it step by step.
-Dan