Vulture1991
- 4
- 0
Let f:\mathbb{R}^m\rightarrow\mathbb{R}^m. Define the zero set by \mathcal{Z}\triangleq\{x\in\mathbb{R}^m | f(x)=\mathbf{0}\} and an \epsilon-approximation of this set by \mathcal{Z}_\epsilon\triangleq\{x\in\mathbb{R}^m|~||f(x)||\leq\epsilon\} for some \epsilon>0. Clearly \mathcal{Z}\subseteq \mathcal{Z}_\epsilon. Can one assume any condition on the function f so that<br />
\lim_{\epsilon\rightarrow 0}~\max_{x\in \mathcal{Z}_\epsilon}~\text{dist}(x, \mathcal{Z})=0,<br />holds?
I know in general this doesn't hold by this example (function of a scalar variable):
<br /> f(x)=\left\{\begin{align}<br /> 0,\quad{x\leq 0};<br /> \\<br /> 1/x,\quad x>0.<br /> \end{align}<br /> \right.<br />
I really appreciate any help or hint.
Thank you.
I know in general this doesn't hold by this example (function of a scalar variable):
<br /> f(x)=\left\{\begin{align}<br /> 0,\quad{x\leq 0};<br /> \\<br /> 1/x,\quad x>0.<br /> \end{align}<br /> \right.<br />
I really appreciate any help or hint.
Thank you.