B Does the Laplace operator equal the Del operator squared?

AI Thread Summary
The Laplace operator, represented as Δ, is equivalent to the divergence of the gradient operator, denoted as ∇². This relationship can be derived from the definitions of these operators, confirming that Δ = ∇·∇. The discussion also explores a specific equation involving fields σ and h, questioning how to solve it to derive σ = m ln h. The importance of using Cartesian coordinates for simplicity in differential operator properties is emphasized, as they allow for straightforward calculations. Overall, the thread clarifies the mathematical relationships between these operators and their applications in field equations.
Safinaz
Messages
255
Reaction score
8
TL;DR Summary
Dose Laplace operator ##\Delta## equal nabla operator squared ## \bigtriangledown^2## ?
Hello ,

The Laplace operator equals

## \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} ##

so does it equal as well nable or Del operator squared ## \bigtriangledown^2## ?

where

## \bigtriangledown =\frac{\partial}{\partial x} { \bf x} + \frac{\partial}{\partial y} { \bf y} + \frac{\partial}{\partial z } { \bf z}
##

Edit:

Now about this equation## \Delta \sigma + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma = \frac{3}{2} e^{-2\sigma} \partial_\mu h \partial^\mu h ##

where ##\sigma## and ##h## are fields, and m and n are constants. I wonder how this equation to be solved to give ##\sigma = m ~ln h## as given by equations : (21), (23) in Paper
 
Last edited:
Physics news on Phys.org
\Delta = \vec{\nabla}\cdot \vec{\nabla} is a notational convention
 
Indeed ##\Delta=\vec{\nabla} \cdot \vec{\nabla}##. It's not a convention but can be derived from the meaning of the operators, which is independent on the chosen basis and coordinate system, because it is a vector operator. The nice thing of this fact is that you can always use the most convenient basis for your problem. For general properties of the various differential operators Cartesian coordinates are the most simple ones. So let ##\vec{e}_k## (##k \in \{1,2,3 \}##) be a right-handed Cartesian basis, for which ##\vec{e}_k=\text{const}## and ##\vec{e}_1 \times \vec{e}_2=\vec{e}_3##.

Then the gradient of a scalar field is defined by
$$\vec{\nabla} \Phi=\vec{e}_k \partial_k \Phi,$$
where you have to some over ##k=1 \ldots 3## (Einstein summation convention). This is a vector field expressed with help of the Cartesian basis and its components wrt. this basis.

Now it is immediately clear that by taking the formal scalar product of ##\vec{\nabla}=\vec{e}_k \partial_k## with this vector field you get another scalar field,
$$\vec{\nabla} \cdot \vec{\nabla} \Phi = (\vec{e}_j \partial_j) \cdot (\vec{e}_k \partial_k \Phi) = (\vec{e}_j \cdot \vec{e}_k) \partial_j \partial_k \Phi = \delta_{jk} \partial_j \partial_k \Phi,$$
where
$$\delta_{jk}=\begin{cases} 1 & \text{for} \quad j=k, \\ 0 & \text{for} \quad j \neq k. \end{cases}$$
So finally you get
$$\vec{\nabla} \cdot \vec{\nabla} \Phi = \partial_j \partial_j \Phi = (\partial_1^2 + \partial_2^2 + \partial_3^2) \Phi=\Delta \Phi.$$
 
vanhees71 said:
Indeed ##\Delta=\vec{\nabla} \cdot \vec{\nabla}##. It's not a convention but can be derived from the meaning of the operators, which is independent on the chosen basis and coordinate system, because it is a vector operator. The nice thing of this fact is that you can always use the most convenient basis for your problem. For general properties of the various differential operators Cartesian coordinates are the most simple ones. So let ##\vec{e}_k## (##k \in \{1,2,3 \}##) be a right-handed Cartesian basis, for which ##\vec{e}_k=\text{const}## and ##\vec{e}_1 \times \vec{e}_2=\vec{e}_3##.

Then the gradient of a scalar field is defined by
$$\vec{\nabla} \Phi=\vec{e}_k \partial_k \Phi,$$
where you have to some over ##k=1 \ldots 3## (Einstein summation convention). This is a vector field expressed with help of the Cartesian basis and its components wrt. this basis.

Now it is immediately clear that by taking the formal scalar product of ##\vec{\nabla}=\vec{e}_k \partial_k## with this vector field you get another scalar field,
$$\vec{\nabla} \cdot \vec{\nabla} \Phi = (\vec{e}_j \partial_j) \cdot (\vec{e}_k \partial_k \Phi) = (\vec{e}_j \cdot \vec{e}_k) \partial_j \partial_k \Phi = \delta_{jk} \partial_j \partial_k \Phi,$$
where
$$\delta_{jk}=\begin{cases} 1 & \text{for} \quad j=k, \\ 0 & \text{for} \quad j \neq k. \end{cases}$$
So finally you get
$$\vec{\nabla} \cdot \vec{\nabla} \Phi = \partial_j \partial_j \Phi = (\partial_1^2 + \partial_2^2 + \partial_3^2) \Phi=\Delta \Phi.$$
Hello, thanks for the answer. May you please see the edit to the question.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...

Similar threads

Replies
1
Views
2K
Replies
4
Views
913
Replies
22
Views
3K
Replies
2
Views
985
Replies
3
Views
1K
Back
Top