Does the Logistic Difference Equation Have an Exact Sinusoidal Solution?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Discrete sol
Click For Summary
SUMMARY

The discussion centers on verifying the existence of an exact solution for the logistic difference equation, defined as $$u_{t+1}=ru_t(1-u_t)$$ for $$r>0$$, in the form $$u_t=A\sin^2(\alpha^t)$$. The participants analyze the behavior of the solution based on different ranges of $$r$$: for $$14$$, the sequence diverges to $$-\infty$$. The exact solution exists only for specific values of $$r$$: $$-2$$, $$2$$, and $$4$$, with the form $$u_n=\sin^2 [2^{n-1}\cos^{-1} (1-2u_0)]$$ for $$r=4$$.

PREREQUISITES
  • Understanding of the logistic difference equation
  • Familiarity with fixed points in dynamical systems
  • Knowledge of periodic and oscillatory functions
  • Basic concepts of recursive relations in mathematics
NEXT STEPS
  • Investigate the properties of fixed points in the logistic difference equation
  • Explore the implications of the logistic map as a random number generator
  • Learn about the stability of solutions in nonlinear difference equations
  • Study the mathematical derivation of sinusoidal solutions in difference equations
USEFUL FOR

Mathematicians, researchers in mathematical biology, and students studying dynamical systems and difference equations will benefit from this discussion.

Dustinsfl
Messages
2,217
Reaction score
5
Verify that an exact solution exist for the logistic difference equation
$$
u_{t+1}=ru_t(1-u_t),\quad r>0
$$
in the form $u_t=A\sin^2(\alpha^t)$ by determining values of r, A and alpha. Is the solution periodic? Oscillatory?

I have yet to encounter a problem that says verify a solution exist. What do they want me to do?
 
Physics news on Phys.org
First step is writing the recursive relation as...

$\displaystyle \Delta_{n}= u_{n+1}-u_{n}= (r-1)\ u_{n} -r\ u^{2}_{n}=f(u_{n})\ ,\ r>0$ (1)

Second step is investigating the [qualitative...] behavior of the solution supposing r>1. The function $\displaystyle f(x)=(r-1)\ x- r\ x^{2}$ has one 'repulsive fixed point' [a point $x_{0}$ where is $f(x_{0})=0$ and $f^{'}(x_{0})>0$...] in $x_{-}=0$ and one 'attractive fixed point' [a point $x_{0}$ where is $f(x_{0})=0$ and $f^{'}(x_{0})<0$...] in $x_{+}=1-\frac{1}{r}$. An interesting property of f(*) is that for r>1, no matter what is r, is $f(0)=0$ and $f(1)=-1$. The reader can understand better what follows observing the annexed figure, where f(x) for r=2, r=3 and r=4 are reported. Now we examine different situations…

a) $1<r\le 2$. In this case the sequence will converge monotonically increasing [without oscillations...} at $x_{+}=1-\frac{1}{r}$. As example the case $r=2\ ,\ x_{+}= \frac{1}{2}\ ,\ u_{0}=.1$ is reported...

http://www.wolframalpha.com/input/?i=g(0)=.1+,+g(n+1)=2+g(n)-2+g(n)^2

b) $2<r\le 3$. In this case the sequence will converge at $x_{+}=1-\frac{1}{r}$ 'with oscillations'. As example the case $r=3\ ,\ x_{+}= \frac{2}{3}\ ,\ u_{0}=.1$ is reported...

http://www.wolframalpha.com/input/?i=g(0)=.1+,+g(n+1)=3+g(n)-3+g(n)^2

c) $3<r\le 4$. In this case the 'attractive fixed point' in general cannot be 'achieved' and, with very particular exceptions, the sequence, even if bounded, will diverge. As example the case $r=4\ ,\ x_{+}= \frac{3}{4}\ ,\ u_{0}=.1$ is reported...

http://www.wolframalpha.com/input/?i=g(0)=.1+,+g(n+1)=4+g(n)-4+g(n)^2

d) $r>4$. In this case, with very particular exceptions, any $u_{0}$ will produce a sequence diverging to $- \infty$...

In next posts I will try to investigate about the possibility to achieve some explicit expressions of the solutions of (1)...

Kind regards

$\chi$ $\sigma$

View attachment 69
 

Attachments

  • MHB03.PNG
    MHB03.PNG
    2 KB · Views: 111
Last edited:
The 'logistic recursive relation'...

$\displaystyle u_{n+1}=r\ u_{n}\ (1-u_{n})$ (1)

... has closed form solutions only for a limited set of values of r. Some years ago 'Monster Wolfram' postulated that an exact solution should have the form...

$\displaystyle u_{n}= \frac{1}{2}\ \{1-f[r^{n}\ f^{-1} (1-2\ u_{0})]\}$ (2)

... and after some time M.Trott and R.Germundsson demonstrated that such a solution exists only for r=-2, r=2 and r=4. For r=4 is $f(x)=\cos x$ so that is...

$\displaystyle u_{n}= \frac{1}{2}\ \{1-\cos [2^{n}\ \cos^{-1} (1-2\ u_{0})]\}= \sin^{2} [2^{n-1}\ \cos^{-1} (1-2\ u_{0})]$ (3)

Kind regards

$\chi$ $\sigma$
 
Ok so I can get all the ranges for r's at each respective steady state. That is just solving the logistic equation as is. How is $A\sin^2\alpha^t$ used in this problem. I don't understand what to do with it.
 
dwsmith said:
Ok so I can get all the ranges for r's at each respective steady state. That is just solving the logistic equation as is. How is $A\sin^2\alpha^t$ used in this problem. I don't understand what to do with it.

If it is required a solution in the form...

$\displaystyle u_{n}= A\ \sin^{2} \alpha^{n}$ (1)

... with A, r , $\alpha$ and $u_{0}$ constants I'm afraid that the only possibility is $u_{0}=0$ , $A=0$ , with $\alpha$ and $r$ arbitrary. Are You sure that a solution in the form (1) is required?...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
If it is required a solution in the form...

$\displaystyle u_{n}= A\ \sin^{2} \alpha^{n}$ (1)

... with A, r , $\alpha$ and $u_{0}$ constants I'm afraid that the only possibility is $u_{0}=0$ , $A=0$ , with $\alpha$ and $r$ arbitrary. Are You sure that a solution in the form (1) is required?...

Kind regards

$\chi$ $\sigma$

Yup that is what it says verbatim
 
dwsmith said:
Yup that is what it says verbatim

Can you supply the 'original source', please?...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Can you supply the 'original source', please?...

Kind regards

$\chi$ $\sigma$

J.D. Murray Into to Math Bio 1 ch. 2 question 3

If you google the book, there is a pdf file of it in the first page of google choices
 
I found the J.D. Murray's book and at the page 76 is written...

3. Verify that an exact solution exists for the logistic difference equation...

$\displaystyle u_{n+1}=r\ u_{n}\ (1-u_{n})\ ,\ r>0$ (1)

... in the form $u_{n}=A\ \sin^{2} \alpha^{n}$ by determining the values for r, A and $\alpha$. Is the solution (i) periodic?(ii) oscillatory? Describe it! If $r>4$ discuss possible solution implications.

In my opinion the author did commit a slip and he intended to write '... in the form $u_{n}=A\ \sin^{2} (a\ \alpha^{n})$' and in this case the solution is...

$\displaystyle u_{n}= \sin^{2} [2^{n-1}\ \cos^{-1} (1-2 u_{0})] \implies r=4\ ,\ A=1\ ,\ \alpha=2\ ,\ a=\frac{\cos^{-1} (1-2 u_{0})}{2}$ (1)

In order to verify that see...

http://mathworld.wolfram.com/LogisticMap.html

It is remarkable the fact that in general the (1) is non periodic and, because is $0<u_{n}<1$, the (1) is an excellent random number generator with 'key' $u_{0}$...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K