MHB Don't solving this problem, just need some info.

  • Thread starter Thread starter Nate Learning
  • Start date Start date
Click For Summary
Starting with the equation \((3x^7 + y^2)^{1/2} = \sin^2(y) + 100xy\), squaring both sides is an option but may not simplify the differentiation process. Instead, differentiating directly using the chain rule is recommended. The derivatives of both sides are calculated, leading to an equation involving \(\frac{dy}{dx}\). The final step is to solve this equation for \(\frac{dy}{dx}\). This approach provides a clearer path to finding the derivative without complicating the initial equation.
Nate Learning
Messages
2
Reaction score
0
image0.jpg


Should I start off by squaring both sides to get rid of the radical on the left? and then start the derivative process? Thank you.
 
Physics news on Phys.org
Looking at the square of the right side, i probably would not.
 
Nate Learning said:
View attachment 11217

Should I start off by squaring both sides to get rid of the radical on the left? and then start the derivative process? Thank you.
You certainly could do it that way, but I don't see that it would be any easier than just differentiating the equation as it stands. Write it as $$\bigl(3x^7 + y^2\bigr)^{1/2} = \sin^2y + 100xy,$$ and differentiate both sides with respect to $x$ using the chain rule.
 
Beer induced query follows.
Nate Learning said:
View attachment 11217

Should I start off by squaring both sides to get rid of the radical on the left? and then start the derivative process? Thank you.
From which book did you get this challenging derivative?
 
$(3x^7+ y^2)^{1/2}= sin^2(y)+ 100xy$

The derivative of $3x^7+ y^2$ with respect to x is $21x^6+ 2y\frac{dy}{dx}$ so the derivative of $(3x^7+ y^2)^{1/2}$ is $\frac{1}{2}(3x^7+ y^2)^{-1/2}(21x^6+ 2y\frac{dy}{dx})$.

The derivative of $sin^2(y)$ with respect to x is $2 sin(y) cos(y)\frac{dy}{dx}$.

And the derivative of $100 xy$ with respect to x is $100y+ 100x\frac{dy}{dx}$.

So the derivative of $(3x^7+y^2)^{1/2}= sin^2(y)+ 100xy$ with respect to x is $\frac{1}{2}(3x^7+ y^2)^{-1/2}(21x^6+ 2y\frac{dy}{dx})= 2 sin(y) cos(y)\frac{dy}{dx}+ 100y+ 100x\frac{dy}{dx}$.

Solve that equation for $\frac{dy}{dx}$.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 49 ·
2
Replies
49
Views
6K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 3 ·
Replies
3
Views
4K