MHB Double Integral: Evaluating $II_{5a}$ in $R=[0,2] \times [-1,1]$

Click For Summary
The double integral \( II_{5a} = \iint_{R} xy\sqrt{x^2+y^2}\, dA \) is evaluated over the region \( R = [0,2] \times [-1,1] \). The function \( f(x,y) = xy\sqrt{x^2+y^2} \) is odd in \( y \), leading to \( \int_{-1}^1 f(x,y)\, dy = 0 \). Consequently, regardless of the limits on \( x \), the double integral evaluates to zero. The discussion confirms that the limits do not affect the result due to the symmetry of the function. Thus, \( II_{5a} = 0 \).
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{a. Evaluate :}$
\begin{align*}\displaystyle
R&=[0,2] \times [-1,1]\\
II_{5a}&=\iint\limits_{R}xy\sqrt{x^2+y^2}\, dA
\end{align*}
next step?
$$\displaystyle\int_0^1 \int_{-1}^1
xy\sqrt{x^2+y^2}\, dxdy$$
 
Physics news on Phys.org
Re: 15.2.a dbl int

karush said:
$\textsf{a. Evaluate :}$
\begin{align*}\displaystyle
R&=[0,2] \times [-1,1]\\
II_{5a}&=\iint\limits_{R}xy\sqrt{x^2+y^2}\, dA
\end{align*}
next step?
$$\displaystyle\int_0^1 \int_{-1}^1
xy\sqrt{x^2+y^2}\, dxdy$$
If $f(x,y) = xy\sqrt{x^2+y^2}$ then $f(x,-y) = -f(x,y)$ and therefore $$\int_{-1}^1f(x,y)\,dy = 0.$$ So $$II_{5a} = 0.$$
 
Re: 15.2.a dbl int

wait
one of the limits is [0,2]
looks like a typo in the Integral
 
Re: 15.2.a dbl int

karush said:
wait
one of the limits is [0,2]
looks like a typo in the Integral
Makes no difference whether it is 1 or 2. The $y$-integral is zero and therefore the double integral is zero.
 

Similar threads

Replies
5
Views
2K
Replies
4
Views
1K
Replies
10
Views
2K
Replies
4
Views
2K
Replies
5
Views
3K
Replies
5
Views
2K