MHB Douglas' questions about Laplace Transforms

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Hi, I got 2 questions extremely close to the solution provided by weblearn, I was wondering you could explain if my answers were right but in the wrong syntax or where I made a mistake (whenever you have the time).

_________________________________________________________________
Question 1/
d^2y/dx^2 + 7*dy/dx + 12*y = -36H(t-2) , y(0) = 0 y'(0) = 0

Find y(t)?

My answer was y(t) = -1/3 - 9*exp(-4*t) + 12exp(-3*t)

The solution was y(t) = -3H(t-2) [ 1 - 4exp(-3*(t-2)) + 3exp(-4*(t-2))

Partway through my working out I rearranged the equation to get Y(s) = -36/ s*(s^2 + 7s + 12)
Which I solved using partial fractions. A= -1/3 B=-9 C= 12

Where does the shift come in and how can I recognise it? The Heaviside on the right hand side was only to a constant, 36 not a function f(t)?

___________________________________________________________________
Question 2/

Inverse Laplace of 2(s^2 +48s -36) / s( s^2 - 36) e^-2s

The answer I got was 2 + 16sinh(6(t-2)) H(t-2)

The solution on weblearn was 2H(t-2)( 1 + 8sinh( 6(t-2)) )

- In weblearn does the Heaviside component always need to be written at the front of the answer to be registered?
- Am I right by thinking both answers are the same just with 2 taken as a factor? Does weblearn only register a single format for the answer?

_______________________________________________________________________
Question 3/

L[ f(t) = -2t + 11 + H(t-4) ( 8t^2 - 32t) ]

My answer with the exact syntax used -
(-2/s^2) + (11/s) + (exp(-4*s) * ((16/s^3) - (32/s^2) ) )

Weblearn Solution:
-2/s^2 + 11/s + [ 16/s^3 + 32/s^2 ] * e^-4s

The only difference I can see is the + sign in front of the last term and that e^-4s is written at the end and not the front.

- Why is it positive and not negative?
- Will weblearn register the answer correctly if the exponent is in front or does it need to be at the end of the brackets?

- Are square brackets registered on weblearn?
____________________________________________________________________________

I know most of these questions are about the syntax but it's better to clarify now rather than towards the end of semester. It's mostly because electronic marking can be a bit finicky sometimes.

Thanks in advance

Douglas

1.
$\displaystyle \begin{align*} y''(t) + 7y'(t) + 12y(t) &= -36H(t - 2) \textrm{ with } y(0) = 0, y'(0) = 0 \\ \mathcal{L} \left\{ y''(t) + 7y'(t) + 12y(t) \right\} &= \mathcal{L} \left\{ -36H(t-2) \right\} \\ s^2\,Y(s) + s\,y(0) + y'(0) + 7 \left[ s\,Y(s) - y(0) \right] + 12Y(s) &= -\frac{36}{s}e^{-2s} \\ s^2\,Y(s) + 7s\,Y(s) + 12Y(s) &= -\frac{36}{s}e^{-2s} \\ Y(s) \left( s^2 + 7s + 12 \right) &= -\frac{36}{s}e^{-2s} \\ Y(s) \left( s + 3 \right) \left( s + 4 \right) &= -\frac{36}{s} e^{-2s} \\ Y(s) &= -\frac{36}{s \left( s + 3 \right) \left( s + 4 \right) } e^{-2s} \end{align*}$

So now applying partial fractions

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s + 3} + \frac{C}{s + 4} &\equiv \frac{36}{s \left( s + 3 \right) \left( s + 4 \right) } \\ \frac{A \left( s + 3 \right) \left( s + 4 \right) + B\,s \left( s + 4 \right) + C \, s \left( s + 3 \right) }{s \left( s + 3 \right) \left( s + 4 \right) } &\equiv \frac{36}{s \left( s + 3 \right) \left( s + 4 \right) } \\ A \left( s + 3 \right) \left( s + 4 \right) + B \, s \left( s + 4 \right) + C\,s \left( s + 3 \right) &\equiv 36 \end{align*}$

Let $\displaystyle \begin{align*} s = 0 \end{align*}$ to find $\displaystyle \begin{align*} 12A = 36 \implies A = 3 \end{align*}$. Let $\displaystyle \begin{align*} s = -3 \end{align*}$ to find $\displaystyle \begin{align*} -3B = 36 \implies B = -12 \end{align*}$. Let $\displaystyle \begin{align*} s = -4 \end{align*}$ to find $\displaystyle \begin{align*} 4C = 36 \implies C = 9 \end{align*}$. So that means $\displaystyle \begin{align*} \frac{36}{s \left( s + 3 \right) \left( s + 4 \right) } \equiv \frac{3}{s} - \frac{12}{s + 3} + \frac{9}{s + 4} \end{align*}$. So for starters, a mistake is that you have 1/3 as one of the coefficients instead of 3. Anyway...

$\displaystyle \begin{align*} Y(s) &= -\frac{36}{s \left( s + 3 \right) \left( s + 4 \right) } e^{-2s} \\ Y(s) &= \left( -\frac{3}{s} + \frac{12}{s + 3} - \frac{9}{s + 4} \right) \, e^{-2s} \end{align*}$

and now we apply the rule $\displaystyle \begin{align*} \mathcal{L}^{-1} \left\{ e^{-a\,s} \, F(s) \right\} = f(t-a)\,H(t-a) \end{align*}$. Notice that $\displaystyle \begin{align*} \mathcal{L}^{-1} \left\{ -\frac{3}{s} + \frac{12}{s + 3} - \frac{9}{s + 4} \right\} = -3 + 12e^{-3t} - 9e^{-4t} \end{align*}$, so that means

$\displaystyle \begin{align*} Y(s) &= \left( -\frac{3}{s} + \frac{12}{s + 3} - \frac{9}{s + 4} \right) \, e^{-2s} \\ y(t) &= \mathcal{L}^{-1} \left\{ \left( -\frac{3}{s} + \frac{12}{s + 3} - \frac{9}{s + 4} \right) \, e^{-2s} \right\} \\ y(t) &= \left[ -3 + 12e^{-3 \left( t - 2 \right) } - 9 e^{-4 \left( t - 2 \right) } \right] \, H(t - 2) \end{align*}$2. If you had entered:

( 2 + 16sinh(6(t-2)) ) H(t-2)

you would have gotten the answer correct. Yes, what the solution gives is the same as this with a factor of 2 taken out.3. Starting with $\displaystyle \begin{align*} 8t^2 - 32t &= 8 \left( t^2 - 4t \right) \end{align*}$, let $\displaystyle \begin{align*} u = t - 4 \implies t = u + 4 \end{align*}$, then we have

$\displaystyle \begin{align*} 8 \left( t^2 - 4t \right) &= 8 \left[ \left( u + 4 \right) ^2 - 4 \left( u + 4 \right) \right] \\ &= 8 \left( u^2 + 8u + 16 - 4u - 16 \right) \\ &= 8 \left( u^2 + 4u \right) \\ &= 8 \left[ \left( t - 4 \right) ^2 + 4 \left( t - 4 \right) \right] \end{align*}$

This is why there is a + instead of a - where your answer differ. Continuing we have...

$\displaystyle \begin{align*} \mathcal{L} \left\{ -2t + 11 + H(t - 4) \, \left( 8t^2 - 32t \right) \right\} &= \mathcal{L} \left\{ -2t + 11 + 8H(t-4) \, \left[ \left( t - 4 \right) ^2 + 4 \left( t - 4 \right) \right] \right\} \\ &= -\frac{2}{s^2} + \frac{11}{s} + 8e^{-4s} \, \mathcal{L} \left\{ t^2 + 4t \right\} \\ &= -\frac{2}{s^2} + \frac{11}{s} + 8e^{-4s} \left( \frac{2}{s^3} + \frac{4}{s^2} \right) \end{align*}$

To answer your other question, Weblearn uses the same syntax as Maple, and all brackets (even nested brackets) should be entered as round brackets.
 
Mathematics news on Phys.org


So in your case, your final answer could have been entered into Weblearn as:

(-2/s^2) + (11/s) + (8*exp(-4*s)) * ( (2/s^3) + (4/s^2) )

I hope that helps.

 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top