B E.P.E. -> ? when 2 masses are attached to a spring

AI Thread Summary
When two masses m and M are attached to a compressed spring and released, the elastic potential energy converts into kinetic energy, affecting both masses. The center of mass remains at rest, while the masses oscillate around it, indicating that momentum is conserved. The system's frequency is determined by the combined mass and spring stiffness, analogous to a capacitor with inductors. The effective total mass can be calculated using the formula for masses in series. Kinetic energy distribution between the masses occurs in inverse proportion to their respective masses.
Codemetry
Messages
4
Reaction score
1
Two masses m and M are attached to a compressed spring. When the spring decompresses, the masses won't be pushed off the spring. What will happen to the masses and the entire system? By conservation of energy, the elastic potential energy of the spring will convert into kinetic energy, but which mass / entire system will have an increase in K.E.? What will happen to the center of mass?
 
Physics news on Phys.org
You should consider not only energy but momentum conservation. The center of mass keeps at rest. The masses oscillate around it.
 
I think it may be analogous to a capacitor with two inductors connected across it. This system has only one resonance, caused by the combined inductance. So the combined masses will determine the frequency, in combination with the spring stiffness. As the masses act in series, we need to find the effective total mass from 1/Mt = 1/M1 + 1/M2. The kinetic energy is entirely in the motion of the masses and would seem to be shared in inverse proportion to the masses.
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top