MHB Econ: Solving Elasticity Problem & Analyzing Revenue Function

  • Thread starter Thread starter mathkid3
  • Start date Start date
  • Tags Tags
    Elasticity
mathkid3
Messages
23
Reaction score
0
The demand function for a product is given by p = 800 -4x, 0 <= X <= 200, where p is the price (in dollars) and x is the number of units.

(a) Determine when the demand is elastic, inelastic and of unit elasticity.

(b) Use the result of part (a) to describe the behavior of the revenue function.(Angry)
 
Mathematics news on Phys.org
The elasticity $E$ of a demand function $p(x) = 800-4x $ is given as $\displaystyle E = \frac{x\times p'(x)}{p(x)}$
 
hi,

Thanks for your help here. I am only in an Elementary Calculus 1 class and where I am sure your answer is correct...they have not introduced us to the formula you use.

What they have done is give us the following formula and I wanted to ask if you could respond again, taking this basic elementary formula and stating it again in a way I could proceed?

N = (p/x)/(dp/dx) They state this is
Formula for price
elasticity of demand

Thank you sir!
 
Last edited:
mathkid3 said:
hi,

Thanks for your help here. I am only in an Elementary Calculus 1 class and where I am sure your answer is correct...they have not introduced us to the formula you use.

What they have done is give us the following formula and I wanted to ask if you could respond again, taking this basic elementary formula and stating it again in a way I could proceed?

N = (p/x)/(dp/dx) They state this is
Formula for price
elasticity of demand

Thank you sir!

If you consult the relevant Wikipedia page you will see that pickslides' definition of the elasticity is the standard definition, yours is the reciprical of this (see the note below about notation if you are not familiar with the dash notation for a derivative).

The same page gives you all the information you need to interpret the Elasticity, or if you are required to use the reciprical definition is easilly reinterpretable in terms of that since N=1/E the way you have defined it.

For your information:
\[ p'(x)=\frac{dp}{dx}\]
is what picksides notation denotes.

CB
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
3K
Replies
1
Views
1K
Replies
3
Views
15K
Replies
4
Views
3K
Replies
6
Views
3K
Replies
3
Views
3K
Back
Top