- #1
MarkFL
Gold Member
MHB
- 13,288
- 12
Here is the question:
I have posted a link there to this thread so the OP can view my work.
Need help with derivatives please!?
All answers involve a unit of dollars, so you must enter your answers accurate to two decimal places!
A factory owner who employes m workers finds that they produce
q= 1.8m(1.8m+18)^3/2 units of product per day.
The total revenue R in dollars is
R=1312q / (24660+5q)^1/2
(a) From the fact that
revenue =(price per unit)*(number of units)
it follows that
R=(price per unit)*q
So when there are 10 workers, the price per unit is ? dollars.
(b) When there are 10 workers, the marginal revenue is ? dollars/(one unit of product).
(c) The marginal-revenue product is defined as the rate of change of revenue with respect to the number of employees. Therefore,
marginal-revenue product=dR/dm
If q and R are given as above then, when m= 10, the marginal-revenue product is ? dollars/(one worker). This means that if employee number 11 is hired, revenue will increase by approximately ? dollars per day.
I tried substituting 10 for m and my answer was 3888 which is wrong :(
also I know that the marginal revenue is the derivative of the revenue function but i still can't seem to find the right answer :(
I have posted a link there to this thread so the OP can view my work.