First of all, in your statement saying that the final temperature and pressure are greater than the initial is only partially correct. The final temperature is greater than that of the initial temperature but on a TS diagram, lines of constant pressure follow parabolic slopes each of which P1 and P4 pass though. They both, however, are points on the same parabola, thus P1=P4 or the intial and final pressures are the same. Think of a turbojet, the pressure before any compression is (well let's assume in engine is stationary on a test stand) in this case the initial pressure is simply the ambient pressure. Well the exhaust gases are expelled into...yes the same atmosphere so at the exit the pressure the gas is expanding to is still the same as that of the inlet. If the engine was in flight, we'd simply need to find the new pressure using some basic isentropic formulas relating the mach number, the specific heat ratio, and the pressure ratios to determine what's called the stagnation pressure. Anyways in the IDEAL brayton cycle the efficiency is equal to 1 - (Tburnexit/Tturbexit) (gam is 1.4 for air). So if we reduce the exit temperature what we essentially have done is used the energy to "overpower" the compressor and turbine. This is WASTED power because the useful power extracted here lies in the kinetic energy of the exhaust gases. because the exit temperature is less, so is our exit velocity of the exhaust as Vexit = Mexit*sqrt(gam*R*Texit). So we have less velocity, also Thrust is equal to (mass flow rate air + mass flow rate fuel)*Vexit. (mdot fuel << mdot air), but i'll still leave it in for completeness. So a lower exit temperature means less thrust as well. Thus, it is clear that a lower exhaust temperature/pressure will DECREASE the thermal effeciency of the brayton cycle!