Efficiently Solve u_xx = u_tt with D'Lambert Method | Detailed Guide

  • Context: MHB 
  • Thread starter Thread starter Hurry
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the wave equation \(u_{tt} = u_{xx}\) using the d'Alembert method. The initial conditions specified are \(u(x,0) = 0\) for all \(x\) and \(u_t(x,0) = \sin x\) for \(|x| \leq \pi\). The solution is derived through various cases based on the values of \(x-t\) and \(x+t\), leading to the final expression \(U(x,t) = \sin(x)\sin(t)\) for specific intervals. The analysis confirms the effectiveness of the d'Alembert method in addressing initial value problems for wave equations.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with the d'Alembert method for solving wave equations
  • Knowledge of initial value problems in mathematical physics
  • Proficiency in integration techniques, particularly for trigonometric functions
NEXT STEPS
  • Study the derivation of d'Alembert's solution for different types of wave equations
  • Explore the implications of initial and boundary conditions on wave propagation
  • Learn about other methods for solving PDEs, such as Fourier series and separation of variables
  • Investigate applications of wave equations in physical systems, such as strings and sound waves
USEFUL FOR

Mathematicians, physicists, and engineering students focusing on wave mechanics and partial differential equations will benefit from this discussion. Additionally, educators teaching advanced calculus or mathematical methods in physics may find the insights valuable.

Hurry
Messages
3
Reaction score
0
Consider

$\begin{align*}
& {{u}_{tt}}={{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0 \\
& u(x,0)=0,\text{ }x\in \mathbb{R} \\
& {{u}_{t}}(x,0)=\left\{ \begin{matrix}
\sin x,\text{ }\left| x \right|\le \pi \\
0,\text{ }x\notin [-\pi ,\pi ] \\
\end{matrix} \right.
\end{align*}
$

How can I solve this by using D'Lambert method?
 
Physics news on Phys.org
Hurry said:
Consider

$\begin{align*}
& {{u}_{tt}}={{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0 \\
& u(x,0)=0,\text{ }x\in \mathbb{R} \\
& {{u}_{t}}(x,0)=\left\{ \begin{matrix}
\sin x,\text{ }\left| x \right|\le \pi \\
0,\text{ }x\notin [-\pi ,\pi ] \\
\end{matrix} \right.
\end{align*}
$

How can I solve this by using D'Lambert method?

Hi Hurry,

The d'Alembert's Solution for the given partial differential equation is, (Refer this or this.)

\[U(x,\,t)=\frac{1}{2}U(x-t,\,0)+\frac{1}{2}U(x+t,\,0)+\frac{1}{2}\int_{x-t}^{x+t}U_{t}(s,\,0)\,ds\]

Since \(U(x,\,0)=0~\forall~x\in\Re\) we get,

\begin{eqnarray}

U(x,\,t)&=&\frac{1}{2}\int_{x-t}^{x+t}U_{t}(s,\,0)\,ds\\

\end{eqnarray}

Case I: When, \(x-t\leq-\pi\mbox{ and }x+t\geq\pi\)

\begin{eqnarray}

U(x,\,t)&=&\frac{1}{2}\int_{-\pi}^{\pi}\sin(s)\,ds\\

&=&0

\end{eqnarray}

Case II: When, \(-\pi<x-t<\pi\mbox{ and }x+t\geq\pi\)

\begin{eqnarray}

U(x,\,t)&=&\frac{1}{2}\int_{x-t}^{\pi}\sin(s)\,ds\\

&=&\frac{1}{2}[1+\cos(x-t)]

\end{eqnarray}Case III: When, \(-\pi<x-t<\pi\mbox{ and }-\pi<x+t<\pi\)

\begin{eqnarray}

U(x,\,t)&=&\frac{1}{2}\int_{x-t}^{x+t}\sin(s)\,ds\\

&=&\frac{1}{2}[-cos(x+t)+\cos(x-t)]

\end{eqnarray}

By the Sum to product identity we get,

\[U(x,\,t)=\sin(x)\sin(t)\]

Case IV: When, \(x-t\leq-\pi\mbox{ and }-\pi<x+t<\pi\)

\begin{eqnarray}

U(x,\,t)&=&\frac{1}{2}\int_{-\pi}^{x+t}\sin(s)\,ds\\

&=&\frac{1}{2}[-1-\cos(x+t)]

\end{eqnarray}

Case V: Otherwise. (\([-\pi,\pi]\cap[x-t,x+t]=\varnothing\))

\[U(x,\,t)=0\]

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K