Eggy's question at Yahoo Answers regarding optimization with constraint

Click For Summary
SUMMARY

The forum discussion centers on optimizing the dimensions of a cone-shaped paper drinking cup to hold 10ml of water while minimizing the surface area. Two methods are presented: one using Lagrange multipliers and the other through differentiation of the surface area formula. Both methods yield the same results for the height and radius, specifically, height \( h = \sqrt[3]{\frac{60}{\pi}} \) cm and radius \( r = \frac{\sqrt[3]{\frac{60}{\pi}}}{\sqrt{2}} \) cm. The discussion emphasizes the application of calculus techniques in solving optimization problems.

PREREQUISITES
  • Understanding of calculus, specifically optimization techniques
  • Familiarity with Lagrange multipliers
  • Knowledge of differentiation and setting derivatives to zero for optimization
  • Basic understanding of geometric formulas for volume and surface area of cones
NEXT STEPS
  • Study the application of Lagrange multipliers in various optimization problems
  • Learn advanced differentiation techniques for multivariable functions
  • Explore geometric optimization problems involving different shapes
  • Practice solving real-world problems using calculus-based optimization methods
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are interested in optimization techniques and their applications in real-world scenarios.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Max Min problem help?

A cone-shaped paper drinking cup is to hold 10ml of water. What is height and radius of the cup that will require the least amount of paper?

Here is a link to the question:

Calculus Max Min problem help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello Eggy,

Using Lagrange multipliers, we have the objective function (using the formula for the lateral surface area of a cone):

$$f(h,r)=\pi r\sqrt{r^2+h^2}$$

subject to the constraint on the volume in ml:

$$g(h,r)=\frac{\pi}{3}hr^2-V=0$$

We have used the constant $V$ rather than the given value as we can just plug this in at the end of the problem.

Hence, we obtain the system:

$$\pi r\frac{h}{\sqrt{r^2+h^2}}=\lambda\left(\frac{\pi r^2}{3} \right)$$

$$\pi\left(r\frac{r}{\sqrt{r^2+h^2}}+\sqrt{r^2+h^2} \right)=\lambda\left(\frac{2\pi hr}{3} \right)$$

This system may be simplified to:

$$\frac{h}{\sqrt{r^2+h^2}}=\lambda\left(\frac{r}{3} \right)$$

$$\frac{2r^2+h^2}{\sqrt{r^2+h^2}}=\lambda\left(\frac{2hr}{3} \right)$$

Solving both equation for $\lambda$ and equating, we obtain:

$$\lambda=\frac{3h}{r\sqrt{r^2+h^2}}=\frac{3(2r^2+h^2)}{2hr\sqrt{r^2+r^2}}$$

This implies:

$$h^2=2r^2$$

Substituting into the constraint for $r^2$, we find:

$$\frac{\pi}{3}h\left(\frac{h^2}{2} \right)-V=0$$

Solving for $h$ we obtain:

$$h=\sqrt[3]{\frac{6V}{\pi}}$$

and so:

$$r=\frac{h}{\sqrt{2}}=\frac{\sqrt[3]{\frac{6V}{\pi}}}{\sqrt{2}}$$

Now, since $$V=10\text{ mL}$$, and $$1\text{ mL}=1\text{ cm}^3$$, we find that $r$ and $h$ in cm are:

$$h=\sqrt[3]{\frac{60}{\pi}}$$

$$r=\frac{\sqrt[3]{\frac{60}{\pi}}}{\sqrt{2}}$$

To Eggy and any other guests viewing this topic, I invite and encourage you to post other optimization problems in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Well, since I don't know about Lagrange Multipliers, this is how I would have done it:

A=\pi r\sqrt{r^2+h^2}

V=\dfrac{\pi}{3}hr^2

Keeping in mind that V is a constant (in this case 10).

Since we're minimizing the area, we need to differentiate A, but having r and h as variables, we need to use the expression for V to get h in terms or r, or r in terms of h. I'm going with h in terms of r.

V=\dfrac{\pi}{3}hr^2

h = \dfrac{3V}{\pi r^2}

Substituting in the area expression:

A=\pi r\sqrt{r^2+\dfrac{9V^2}{\pi^2 r^4}}

Or we could write it like this:

A=\sqrt{\pi^2r^2\left(r^2+\dfrac{9V^2}{\pi^2 r^4}\right)}

A=\sqrt{\pi^2r^4 + \dfrac{9V^2}{r^2}}

Differentiate and set to zero for optimum:

A'=\dfrac12 \left(\pi^2r^4 + \dfrac{9V^2}{r^2}\right)^{-0.5} \cdot \left(4\pi^2r^3 - \dfrac{18V^2}{r^3}\right) = 0

\dfrac{\left(2\pi^2r^3 - \dfrac{9V^2}{r^3}\right)}{\sqrt{\pi^2r^4 + \dfrac{9V^2}{r^2}}}=0

2\pi^2r^3 - \dfrac{9V^2}{r^3} = 0

r = \sqrt[3]{\dfrac{3V}{\sqrt{2}\pi}}

The height is then:

h = \dfrac{3V}{\pi \left(\sqrt[3]{\dfrac{3V}{\sqrt{2}\pi}}\right)^2}

Simplified to:

h = \sqrt[3]{\dfrac{6V}{\pi}}

Which are both the same as what Mark obtained. (Happy)

My method just maybe is a little longer/tedious because of many simplifications involved, but that's using the tools I know.
 

Similar threads

Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K