Eigenstates, Eigenvalues & Multicplity of Hamiltonian w/ Spin 1/2

  • Thread starter Thread starter LCSphysicist
  • Start date Start date
  • Tags Tags
    Hamiltonian Spin
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
> Consider two particle with spin 1/2 interacting via the hamiltonian $H
= \frac{A}{\hbar^2}S_{1}.S_{2}$, Where A is a constant. What aare the eigenstates, eigenvalues and its multicplity?

$H = \frac{A}{\hbar^2}S_{1}.S_{2} = A\frac{(SS-S_{1}S_{1}-S_{2}S_{2})}{2\hbar^2 } = A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }$

Now, $S_{1}²$, for example, has the same eigenvectors as S1z, that is, $11,10,1-1,00$
And all these states are eigenvectors of S², so we have:

$$H|11\rangle= A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }|11\rangle = A\frac{(2 \hbar^2- 3 \hbar^2/4 -3 \hbar^2/4 )}{2\hbar^2 }|11\rangle = \frac{A}{4}|11\rangle$$

$$H|10\rangle= A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }|10\rangle = A\frac{(2 \hbar^2- 3 \hbar^2/4 -3 \hbar^2/4 )}{2\hbar^2 }|10\rangle = \frac{A}{4}|10\rangle$$

$$H|1-1\rangle= A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }|1-1\rangle = A\frac{(2 \hbar^2- 3 \hbar^2/4 -3 \hbar^2/4 )}{2\hbar^2 }|1-1\rangle = \frac{A}{4}|1-1\rangle$$

$$H|00\rangle= A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }|00\rangle = A\frac{(- 3 \hbar^2/4 -3 \hbar^2/4 )}{2\hbar^2 }|00\rangle = \frac{-3A}{4}|00\rangle$$

I want to know i this is right. Is it? To be honest, i think it is, but what worries me is that i am not sure i these are all the eigenvalues/eigenvectors. I believe H would be something like a "4x4" matrix, so i think it is. But want to hear your answer too.
 
Physics news on Phys.org
Your work looks correct to me.

For inline Latex, use double hashtag rather than single dollar sign.
 
Just making it easier to read> Consider two particle with spin 1/2 interacting via the hamiltonian $$H
= \frac{A}{\hbar^2}S_{1}.S_{2}$$, Where A is a constant. What aare the eigenstates, eigenvalues and its multicplity?

$$H = \frac{A}{\hbar^2}S_{1}.S_{2} = A\frac{(SS-S_{1}S_{1}-S_{2}S_{2})}{2\hbar^2 } = A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }$$

Now, $$S_{1}²$$, for example, has the same eigenvectors as S1z, that is, $$11,10,1-1,00$$
And all these states are eigenvectors of S², so we have:
 
Herculi said:
I want to know i this is right. Is it? To be honest, i think it is, but what worries me is that i am not sure i these are all the eigenvalues/eigenvectors. I believe H would be something like a "4x4" matrix, so i think it is. But want to hear your answer too.
The Hamiltonian is indeed a 4×4 matrix. You have found 4 eigenvalues, so what's your concern? A quick test on your eigenvalues to check whether if the Hamiltonian matrix is traceless (the sum of diagonal elements is zero), the sum of the eigenvalues must be zero. That is true in this case which does not guarantee the correctness of your eigenvalues but at least they pass this test so there is no error in the arithmetic.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top