Eigenstates, Eigenvalues & Multicplity of Hamiltonian w/ Spin 1/2

  • Thread starter Thread starter LCSphysicist
  • Start date Start date
  • Tags Tags
    Hamiltonian Spin
Click For Summary

Homework Help Overview

The discussion revolves around the eigenstates, eigenvalues, and multiplicity of a Hamiltonian for two particles with spin 1/2, specifically represented by the Hamiltonian \( H = \frac{A}{\hbar^2} S_1 \cdot S_2 \). Participants are examining the implications of the Hamiltonian's structure and the associated quantum states.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to derive the eigenvalues and eigenstates of the Hamiltonian, expressing concern about whether they have identified all possible eigenvalues and eigenvectors. They also question the dimensionality of the Hamiltonian matrix.

Discussion Status

Some participants affirm the correctness of the original poster's calculations and suggest that the Hamiltonian is indeed a 4x4 matrix. There is a discussion about the properties of the eigenvalues, including a check for the trace of the Hamiltonian matrix, which leads to further exploration of the eigenvalue results.

Contextual Notes

Participants are operating under the assumption that the Hamiltonian is correctly formulated and are exploring the implications of their findings without definitive conclusions about the completeness of the eigenstates or eigenvalues.

LCSphysicist
Messages
644
Reaction score
163
Homework Statement
.
Relevant Equations
.
> Consider two particle with spin 1/2 interacting via the hamiltonian $H
= \frac{A}{\hbar^2}S_{1}.S_{2}$, Where A is a constant. What aare the eigenstates, eigenvalues and its multicplity?

$H = \frac{A}{\hbar^2}S_{1}.S_{2} = A\frac{(SS-S_{1}S_{1}-S_{2}S_{2})}{2\hbar^2 } = A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }$

Now, $S_{1}²$, for example, has the same eigenvectors as S1z, that is, $11,10,1-1,00$
And all these states are eigenvectors of S², so we have:

$$H|11\rangle= A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }|11\rangle = A\frac{(2 \hbar^2- 3 \hbar^2/4 -3 \hbar^2/4 )}{2\hbar^2 }|11\rangle = \frac{A}{4}|11\rangle$$

$$H|10\rangle= A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }|10\rangle = A\frac{(2 \hbar^2- 3 \hbar^2/4 -3 \hbar^2/4 )}{2\hbar^2 }|10\rangle = \frac{A}{4}|10\rangle$$

$$H|1-1\rangle= A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }|1-1\rangle = A\frac{(2 \hbar^2- 3 \hbar^2/4 -3 \hbar^2/4 )}{2\hbar^2 }|1-1\rangle = \frac{A}{4}|1-1\rangle$$

$$H|00\rangle= A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }|00\rangle = A\frac{(- 3 \hbar^2/4 -3 \hbar^2/4 )}{2\hbar^2 }|00\rangle = \frac{-3A}{4}|00\rangle$$

I want to know i this is right. Is it? To be honest, i think it is, but what worries me is that i am not sure i these are all the eigenvalues/eigenvectors. I believe H would be something like a "4x4" matrix, so i think it is. But want to hear your answer too.
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Your work looks correct to me.

For inline Latex, use double hashtag rather than single dollar sign.
 
  • Like
Likes   Reactions: Delta2
Just making it easier to read> Consider two particle with spin 1/2 interacting via the hamiltonian $$H
= \frac{A}{\hbar^2}S_{1}.S_{2}$$, Where A is a constant. What aare the eigenstates, eigenvalues and its multicplity?

$$H = \frac{A}{\hbar^2}S_{1}.S_{2} = A\frac{(SS-S_{1}S_{1}-S_{2}S_{2})}{2\hbar^2 } = A\frac{(S^2-S_{1}^2-S_{2}^2)}{2\hbar^2 }$$

Now, $$S_{1}²$$, for example, has the same eigenvectors as S1z, that is, $$11,10,1-1,00$$
And all these states are eigenvectors of S², so we have:
 
Herculi said:
I want to know i this is right. Is it? To be honest, i think it is, but what worries me is that i am not sure i these are all the eigenvalues/eigenvectors. I believe H would be something like a "4x4" matrix, so i think it is. But want to hear your answer too.
The Hamiltonian is indeed a 4×4 matrix. You have found 4 eigenvalues, so what's your concern? A quick test on your eigenvalues to check whether if the Hamiltonian matrix is traceless (the sum of diagonal elements is zero), the sum of the eigenvalues must be zero. That is true in this case which does not guarantee the correctness of your eigenvalues but at least they pass this test so there is no error in the arithmetic.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K