MHB Eigenvalues of Laplacian are non-negative

Click For Summary
The discussion focuses on proving that for a vector x in R^n, the equation x.Lx=0.5 sum(Aij(xi-xj)^2 holds true, where A is the adjacency matrix and L is the Laplacian. The user seeks assistance in understanding this proof and its implications for demonstrating that the eigenvalues of L are non-negative for indices 1
tarnat
Messages
1
Reaction score
0
Hi, I need to learn the following proof and I'm having trouble getting my head round it. Any help would be appreciated.

Show that if vector x in R^n with components x=(x1,x2,...,xn), then
x.Lx=0.5 sum(Aij(xi-xj)^2)
where A is the graphs adjacency matrix, L is laplacian.
Then use this result to prove that the eigen values of L are non-zero for all 1<j<n.

Thanks.
 
Physics news on Phys.org
I have deleted the duplicate of this thread posted in the Discrete Mathematics subforum.

We ask that a question be posted only once and in the appropriate subforum. This eliminates the possibility of duplication of effort on the part of our helpers, whose time is valuable. :D
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
6K
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K