-Eigenvectors and Eigenvalues (311.5.5.15)

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Eigenvalues
Click For Summary

Discussion Overview

The discussion revolves around finding a basis for the eigenspace corresponding to a specific eigenvalue of a given matrix. Participants explore the steps involved in calculating the eigenspace and the associated vectors, with a focus on linear algebra concepts.

Discussion Character

  • Technical explanation, Mathematical reasoning, Homework-related

Main Points Raised

  • One participant presents the matrix and eigenvalue, showing initial steps to find the eigenspace.
  • Another participant confirms the correctness of the initial steps taken by the first participant.
  • A later post reiterates the matrix and eigenvalue, expressing uncertainty about the steps between two calculations.
  • Further elaboration is provided on the eigenspace, detailing the system of equations that must be solved to find the basis vectors.
  • One participant proposes a method to express the basis vectors in terms of arbitrary parameters, leading to a suggested basis for the eigenspace.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the initial steps and the method to find the eigenspace. However, there is some uncertainty expressed regarding the transition between specific calculations, and the discussion includes multiple perspectives on how to represent the basis vectors.

Contextual Notes

The discussion includes assumptions about the linear independence of the proposed basis vectors and the implications of the equations derived from the matrix. There are also unresolved steps in the calculations that participants acknowledge but do not clarify fully.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find a basis for eigenspace corresponding to the listed eigenvalue:
just seeing if these first steps are correct

$$\begin{align*}
A_{15}&=\left[
\begin{array}{rrr} -4&1&1\\ 2&-3&2\\ 3&3&-2 \end{array}
\right],\lambda=-5&(1)\\
A-(-5)i&=\left[
\begin{array}{rrr} -4&1&1\\ 2&-3&2\\ 3&3&-2 \end{array}
\right]-
\left[
\begin{array}{rrr} -5&0&0\\ 0&-5&0\\ 0&0&-5
\end{array}\right]=&(2)\\
&=\left[
\begin{array}{rrr} 1&1&1\\ 2&2&2\\ 3&3&3 \end{array}
\right]&(3)
\end{align*}$$$$\tiny{311.05.01.15;
Linear Algebra \, and \, its \, Applications; \, David \, C Lay; \, 4th \,Edition}$$
 
Last edited:
Physics news on Phys.org
That is correct.
 
$$\begin{align*}
A_{15}&=\left[
\begin{array}{rrr} -4&1&1\\ 2&-3&2\\ 3&3&-2 \end{array}
\right],\lambda=-5&(1)\\
A-(-5)i&=\left[
\begin{array}{rrr} -4&1&1\\ 2&-3&2\\ 3&3&-2 \end{array}
\right]-
\left[
\begin{array}{rrr} -5&0&0\\ 0&-5&0\\ 0&0&-5
\end{array}\right]=&(2)\\
&=\left[
\begin{array}{rrr} 1&1&1\\ 2&2&2\\ 3&3&3 \end{array}
\right]&(3)\\ \\ \\
&=\left[\begin{array}{r}
-1\\ 1\\ 0
\end{array} \right]
\large\cdot
\left[\begin{array}{r}
-1\\ 1\\ 0
\end{array} \right]&(9)
\end{align*}$$

ok (9) is the answer but don't I know the steps between (3) and (9)

$$\tiny{311.05.01.15;
Linear Algebra \, and \, its \, Applications; \, David \, C Lay; \, 4th \,Edition}$$
 
Last edited:
karush said:
$$\begin{align*}
A-(-5)i&=\left[
\begin{array}{rrr} 1&1&1\\ 2&2&2\\ 3&3&3 \end{array}
\right]&(3)\\ \\...\\ \\
&=\left[\begin{array}{r}
-1\\ 1\\ 0
\end{array} \right]
\large\cdot
\left[\begin{array}{r}
-1\\ 1\\ 0
\end{array} \right]&(9)
\end{align*}$$

ok (9) is the answer but don't I know the steps between (3) and (9)
The eigenspace consists of the vectors $$\begin{bmatrix}x\\y\\z\end{bmatrix}$$ such that $$(A+5I)\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix}.$$ So you need to solve the system of equations $$\begin{bmatrix}1&1&1 \\ 2&2&2 \\ 3&3&3 \end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix}.$$ That system reduces to the single equation $x+y+z = 0.$ To find a basis for the subspace consisting of the vectors satisfying that equation, one way would be to say that $y$ and $z$ can be arbitrary but then $x$ must satisfy $x = -y-z.$ Then $$\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}-y-z\\y\\z\end{bmatrix} = y\begin{bmatrix}-1\\1\\0\end{bmatrix} + z\begin{bmatrix}-1\\0\\1\end{bmatrix}.$$ So one possible basis for that subspace consists of the vectors $\begin{bmatrix}-1\\1\\0\end{bmatrix}$ and $\begin{bmatrix}-1\\0\\1\end{bmatrix}$, and that is what your equation (9) ought to say.
 
Last edited:
that was a great helpI have more to post:cool:
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K