(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Show that the multiplicity of an Einstein solid with large N and q is

[tex]\frac{\left(\frac{q+N}{q}\right)^q\left(\frac{q+N}{N}\right)^N}{\sqrt{2\pi q\left(q+N\right)/N}}[/tex]

2. Relevant equations

[tex]N! \approx N^N e^{-N} \sqrt{2 \pi N}[/tex]

3. The attempt at a solution

Well, I've done thus so far:

[tex]

\Omega(N,q) = \frac{(q+N-1)!}{q!(N-1)!} \approx \frac{(q+N)!}{q!N!}

ln(\Omega) = ln(q+N)! - lnq! - lnN

\par

\approx (q+N)ln(q+N) - (q+N) - qlnq+q - NlnN + N = (q+N)ln(q+N) - qlnq - NlnN

[/tex]

I feel like I'm close, but I've no idea where to go from here.

**Physics Forums - The Fusion of Science and Community**

# Einstein Solid and Sterling's Approximation

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Einstein Solid and Sterling's Approximation

Loading...

**Physics Forums - The Fusion of Science and Community**