Explicit demonstration of a measurement interaction

  • #1
EE18
112
13
Homework Statement
See below.
Relevant Equations
See below.
$$\newcommand{\bra}[1]{\left \langle #1 \right \rvert}
\newcommand{\braxket}[3]{\left \langle #1 \middle \rvert #2 \middle \rvert #3 \right \rangle}
\newcommand{\ket}[1]{\left \rvert #1 \right \rangle}
\newcommand{\expec}[1]{\langle #1 \rangle}$$

Ballentine asks us the question at the end of this post. I am unclear on how to proceed because of the exponential of a tensor product operator.

My work:

We note from the outset that ##c## is unitless, as is obvious on dimensional grounds.

Suppose we have some initial, unentangled state (we assume pure states). The initial state of the object is some superposition of position states, of course.
$$\ket{\Psi_0} = \ket{\psi_0} \otimes \ket{\alpha},$$
where ##\ket{\alpha} = \int dx \, \alpha(x) \ket{x}## denotes a preparatory state of the apparatus and ##\ket{\psi_0} = \int dx\, \psi_0(x) \ket{x}## is the initial state of the object. We note that the time-development operator is given by
$$U(t) = e^{-i\int dt\, H(t)/\hbar} = e^{-icQ^{(1)}P^{(2)}\int dt\, \delta(t)/\hbar} = e^{-icQ^{(1)}P^{(2)}/\hbar}.$$
We now consider the measurement interaction:
$$\ket{\Psi_0} = \ket{\psi_0} \otimes \ket{\alpha} \to \ket{\Psi_f} = e^{-icQ^{(1)}P^{(2)}/\hbar}\ket{\psi_0} \otimes \ket{\alpha} = \int dx \int dx' \, \psi_0(x) \alpha(x') \left[ e^{-icQ^{(1)}P^{(2)}/\hbar} \ket{x} \otimes \ket{x'} \right]$$
$$ = \int dx \int dx' \, \psi_0(x) \alpha(x') \sum_{n = 0}^\infty \frac{1}{n!} \left[(-icQ^{(1)}P^{(2)}/\hbar)^n \ket{x} \otimes \ket{x'} \right]$$
$$= \int dx \int dx' \, \psi_0(x) \alpha(x') \sum_{n = 0}^\infty \frac{1}{n!} \left(\frac{-ic}{\hbar} \right)^n \left((Q^{(1)})^n \ket{x}\right) \otimes \left((P^{(2)})^n \ket{x'}\right) $$
$$= \int dx \int dx' \, \psi_0(x) \alpha(x') \sum_{n = 0}^\infty \frac{1}{n!}\left(\frac{-icx}{\hbar} \right)^n \ket{x} \otimes \left((P^{(2)})^n \ket{x'}\right) $$
$$\stackrel{(1)}{=} \int dx \int dx' \, \psi_0(x) \alpha(x') \ket{x} \otimes \left(\sum_{n = 0}^\infty \frac{1}{n!}\left(\frac{-icx}{\hbar}P^{(2)} \right)^n \ket{x'}\right)$$
$$ = \int dx \int dx' \, \psi_0(x) \alpha(x') \ket{x} \otimes \left(e^{\frac{-icx}{\hbar}P^{(2)}} \ket{x'}\right)$$
$$ = \int dx\, \psi_0(x) \ket{x}\otimes \left(\int dx' \, e^{\frac{-icx}{\hbar}P^{(2)}} \ket{x'}\alpha(x')\right)$$
$$ = \int dx\, \psi_0(x) \ket{x}\otimes \left(\int dx' \, e^{\frac{-icx}{\hbar}P^{(2)}} \ket{x'}\bra{x'}\ket{\alpha}\right)$$
$$\int dx\, \psi_0(x) \ket{x}\otimes \left( e^{\frac{-icx}{\hbar}P^{(2)}}\ket{\alpha}\right)$$
$$ \equiv \int dx\, \psi_0(x) \ket{x}\otimes \left( T^{(2)}(cx)\ket{\alpha}\right),$$
where in (1) we use the linearity of the tensor product and where in the last equality we have identified the translation operator.

Now let's consider computing ##\expec{Q^{(1)}Q^{(2)}}## on the post-interaction state (this expectation value is related to the correlation coefficient and has been the proxy which Ballentine uses for correlation). We obtain
$$\expec{Q^{(1)}Q^{(2)}} = \left[ \int dx'\, \psi^*_0(x') \bra{x'}\otimes \left( \bra{\alpha}T^{(2)}(-cx')\right)\right]Q^{(1)}Q^{(2)} \left[ \int dx\, \psi_0(x) \ket{x}\otimes \left( T^{(2)}(cx)\ket{\alpha}\right)\right]$$
$$ \stackrel{(1)}{=} \int dx \, x|\psi^*_0(x)|^2 \bra{\alpha}T^{(2)}(-cx)Q^{(2)}T^{(2)}(cx)\ket{\alpha}$$
where in (1) we've used the inner product definition on a tensor product space and ##\braxket{x'}{Q^{(1)}}{x} = x\delta(x-x')##.

But this doesn't seem to be what Ballentine wants in the end. What does he mean by the "value of ##Q^{(2)}##? I also can't see where to go past where I've gotten to. If anyone can help out I'd greatly appreciate it.

Screen Shot 2023-08-11 at 2.47.23 PM.png
 
Physics news on Phys.org
  • #2
I think, it's easier to keep the time finite. The interaction operator is simple since the operator at different times commute. Thus the time-evolution operator of states in the interaction picture simply is (with ##t_0<0## to avoid trouble with the ##\delta## distribution)
$$\hat{C}(t,t_0)=exp \left (-\mathrm{i} \int_{0}^t \mathrm{d} t' \hat{H}_I(t')/\hbar \right ) = \exp[-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar \Theta(t)].$$
Low you can set ##t>0## and just evaluate
$$|q^{(1)},q^{(2)},t \rangle=\exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle,$$
and then use the result to calculate the "asymptotic free state"
$$|\Psi' \rangle =\int_{q^{(1)},q^{(2)}} \mathrm{d} q^{(1)} \mathrm{d} q^{(2)} \exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle \langle q^{(1)},q^{(2)},0|\Psi_0 \rangle.$$
 
  • #3
vanhees71 said:
I think, it's easier to keep the time finite. The interaction operator is simple since the operator at different times commute. Thus the time-evolution operator of states in the interaction picture simply is (with ##t_0<0## to avoid trouble with the ##\delta## distribution)
$$\hat{C}(t,t_0)=exp \left (-\mathrm{i} \int_{0}^t \mathrm{d} t' \hat{H}_I(t')/\hbar \right ) = \exp[-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar \Theta(t)].$$
Low you can set ##t>0## and just evaluate
$$|q^{(1)},q^{(2)},t \rangle=\exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle,$$
and then use the result to calculate the "asymptotic free state"
$$|\Psi' \rangle =\int_{q^{(1)},q^{(2)}} \mathrm{d} q^{(1)} \mathrm{d} q^{(2)} \exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle \langle q^{(1)},q^{(2)},0|\Psi_0 \rangle.$$
Perhaps I don't follow, but isn't your last line more or less what I've given in my last line? Would you be able to comment on how ##Q^2## now provides a measurement of the initial state of the object's position ##Q^2## beforehand?
 
  • #4
May be, I'm not sure. What should come out is an entangled state between the particle and the detector such that a measurement of ##Q^{(2)}## (reading of the pointer position) leads to a measurement of ##Q^{(1)}## (position of the particle). So you should calculate the state after the interaction and discuss.
 

1. What is an explicit demonstration of a measurement interaction?

An explicit demonstration of a measurement interaction is a scientific experiment or procedure that involves directly observing and measuring the effects of one variable on another. This type of demonstration is often used to validate theories or hypotheses and to understand the relationship between different factors in a system.

2. How is an explicit demonstration of a measurement interaction conducted?

An explicit demonstration of a measurement interaction is typically conducted by manipulating one variable while keeping all other variables constant, and then measuring the resulting changes in the other variable. This can be done in a controlled laboratory setting or in natural environments.

3. What are the benefits of using explicit demonstrations of measurement interactions?

Explicit demonstrations of measurement interactions allow scientists to directly observe and measure the effects of one variable on another, providing concrete evidence to support or refute theories and hypotheses. This approach also allows for the identification of cause-and-effect relationships and can provide insights into how a system functions.

4. What types of measurements are typically used in explicit demonstrations of measurement interactions?

The types of measurements used in explicit demonstrations of measurement interactions vary depending on the specific experiment or procedure. However, common measurements include physical quantities such as length, mass, time, and temperature, as well as more abstract measurements such as behavior, attitudes, and perceptions.

5. Can explicit demonstrations of measurement interactions be used in all scientific fields?

Yes, explicit demonstrations of measurement interactions can be used in all scientific fields, from physics and chemistry to biology and psychology. This approach is fundamental to the scientific method and is an essential tool for understanding the natural world and testing scientific theories.

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
234
  • Advanced Physics Homework Help
Replies
2
Views
764
  • Advanced Physics Homework Help
Replies
8
Views
1K
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
10
Views
586
  • Advanced Physics Homework Help
Replies
1
Views
680
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
24
Views
816
  • Advanced Physics Homework Help
Replies
4
Views
922
Back
Top