Elastic collision formulas -- Derivation blunder

Click For Summary
SUMMARY

The discussion revolves around the derivation of elastic collision formulas, specifically focusing on the equations involving variables α, β, and μ. The user attempts to eliminate variable y from the equations, leading to a quadratic equation for x. The final derived equation, as confirmed by WolframAlpha, is x = (-B ± √(B² - 4AC)) / (2A). However, discrepancies arise when substituting specific values into the derived equations, indicating potential errors in the calculations. The thread was ultimately closed for moderation due to readability issues.

PREREQUISITES
  • Understanding of elastic collision principles
  • Familiarity with quadratic equations and their solutions
  • Proficiency in algebraic manipulation and variable elimination
  • Basic knowledge of LaTeX for mathematical formatting
NEXT STEPS
  • Study the derivation of elastic collision equations in detail
  • Learn how to use WolframAlpha for solving complex equations
  • Explore LaTeX formatting for clearer mathematical presentations
  • Investigate common pitfalls in algebraic manipulations and error-checking techniques
USEFUL FOR

Students, physicists, and mathematicians involved in mechanics, particularly those focusing on collision theory and algebraic problem-solving.

luckis11
Messages
272
Reaction score
2
https://en.wikipedia.org/wiki/Elastic_collision
μα+mβ=μx+my,
μα^2+mβ^2=μx^2+my^2
I want x in relation of all variables except y, therefore I need to replace-eliminate y:
μα+mβ=μx+my =>y=(μα+mβ-μx)/m
μα^2+mβ^2=μx^2+my^2=>y=((μα^2+mβ^2-μx^2)/m)^0.5
and it is eliminated if I equate these two parts of the two equalities with which y is equal to:
((μα+mβ-μx)/m)^2=(μα^2+mβ^2-μx^2)/m=>
(μα+mβ-μx)^2/m=μα^2+mβ^2-μx^2,
A=μα, Β=mβ, C=μx,
(A+B-C)^2=Α^2+ΑΒ-ΑC+AB+B^2-BC-AC-BC+C^2= Α^2+2ΑΒ-2ΑC+B^2-2BC+C^2=>
μ^2α^2+2μαmβ-2μαμx+m^2β^2-2mβμx+μ^2x^2=mμα^2+m^2β^2-mμx^2
so far wolframalfa answers x=(-m α + 2 m β + α μ)/(m + μ) which is the solution according to theory. But the last relation is equivalent with the trionym:
μ^2x^2+mμx^2-2μαμx-2mβμx+μ^2α^2+2μαmβ-mμα^2=0
A=μ^2+mμ, Β= -2αμ^2-2mβμ, C=μ^2α^2+2μαmβ-mμα^2,
Αx^2+Bx+C=0=>x=(-B+-(B^2-4AC)^0.5)/(2A)=>
x=(-(-2αμ^2-2mβμ)+-((-2αμ^2-2mβμ)^2-4(μ^2+mμ)(μ^2α^2+2μαmβ-mμα^2))^0.5)/
(2(μ^2+mμ))
And the latter equation is what also wolframalfa answers now!
And not only this does not seem how it can be factorized, but replacing arithmetic values:
(-m α + 2 m β + α μ)/(m + μ), m=2, α=3, β=5, μ=7=>35/9
(2*3*7^2+2*5*7*2+((-2*3*7^2-2*5*7*2)^2-4(7^2+7*2)(3^2*7^2-3^2*7*2+2*3*5*7*2))^0.5)/(2(2^2+2*7))=245/18≠35/9
(2*3*7^2+2*5*7*2-((-2*3*7^2-2*5*7*2)^2-4(7^2+7*2)(3^2*7^2-3^2*7*2+2*3*5*7*2))^0.5)/(2(2^2+2*7))=21/2≠35/9
whereas:
(7^2)x^2+2*7*x^2-2*49*3x-2*2*5*7*x+49*3^2+2*7*3*2*5-2*7*3^2=0=>x=35/9
Where is the mistake?
 
  • Wow
Likes   Reactions: PeroK
Physics news on Phys.org
unreadable...
 
  • Like
Likes   Reactions: berkeman
Arjan82 said:
unreadable...
Agreed. Thread closed for Moderation...
 
Thread will remain closed. I have asked the OP to start a new thread using the "LaTeX Guide" link below the edit window, and pay attention to good paragraph structure and whitespace.
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
10
Views
3K