Elastic Potential Energy - Positive or Negative?

Click For Summary

Homework Help Overview

The discussion revolves around the concept of elastic potential energy and the integration of force functions to determine changes in potential energy. Participants are examining the signs associated with work done on a spring and how these relate to the potential energy calculations.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the integration of the force function and the implications of negative signs in the context of potential energy. Some express confusion regarding the interpretation of the results, particularly the sign of the change in potential energy. Others suggest creating sketches to clarify the direction of forces involved.

Discussion Status

The conversation is ongoing, with participants exploring different interpretations of the force functions and their implications for potential energy. Some guidance has been provided regarding the distinction between the forces exerted by the spring and the external forces applied to stretch it, though no consensus has been reached.

Contextual Notes

There is mention of terminology preferences, such as the distinction between "relaxed" and "equilibrium" positions, indicating potential assumptions or definitions that may affect the discussion.

amandela
Messages
9
Reaction score
3
Homework Statement
Q: To stretch a certain nonlinear spring by an amount x requires a force F given by F = 40x - 6x2, where F is in newtons and x is in meters. What is the change in potential energy when the spring is stretched 2 meters from its equilibrium position?
Relevant Equations
F=-kd
INT [-F ]dx = ΔPE
So I understand that I have to integrate the negative of the force function to get the change in PE. I get -(20x^2 - 2x^3) and when I evaluate it from 0 to 2, I get -64N. But, of course, the change is positive. What am I missing?

Thank you.
 
Physics news on Phys.org
Make a sketch showing the sign of the directions.Then check your equations.
 
BvU said:
Make a sketch showing the sign of the directions.Then check your equations.
So the Fs is negative (b/c moving back to 0) and I take the negative integral of the negative function?
 
In the formula,
$$\Delta PE = -\int_{x_0}^x F_{\rm s}(x)\,dx,$$ the force ##F_{\rm s}## is the force exerted by the spring. If you reread the problem statement, the force function ##F(x)## is the force exerted by you (or whatever/whomever is doing the stretching) to stretch the spring.

It's like if you do 10 J of work to lift an object and increase its potential energy by the same amount, the work gravity does is negative because gravity pulls downward but the displacement of the object points upward.
 
  • Like
Likes   Reactions: amandela
amandela said:
I get -64N
N?

Btw, I'd prefer it said "relaxed" position, not equilibrium position. If there is a weight hanging from it they are different.
 
  • Like
Likes   Reactions: amandela and SammyS
vela said:
In the formula,
$$\Delta PE = -\int_{x_0}^x F_{\rm s}(x)\,dx,$$ the force ##F_{\rm s}## is the force exerted by the spring. If you reread the problem statement, the force function ##F(x)## is the force exerted by you (or whatever/whomever is doing the stretching) to stretch the spring.

It's like if you do 10 J of work to lift an object and increase its potential energy by the same amount, the work gravity does is negative because gravity pulls downward but the displacement of the object points upward.
OK. Thank you.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
2K
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K