Electric Potential of Two Spherical Shells: Gaussian Surface Homework

Click For Summary
SUMMARY

The discussion revolves around calculating the electric potential of two concentric spherical shells with radii R1 = 2.00 cm and R2 = 6.00 cm, where the inner shell has a charge of q1 = +6.00 nC and the outer shell has a charge of q2 = -9.00 nC. The electric potential at various distances from the center is computed using the formula V = (k q) / r, where k = 8.99E9 N m²/C². The calculations for distances r = 0 cm, r = 3.00 cm, and r = 7.00 cm yield potentials of 1350V, -450V, and -385V respectively, with the need for clarification on the potential difference between the shells.

PREREQUISITES
  • Understanding of electric potential and its calculation using V = (k q) / r
  • Familiarity with Gauss' Law and its application to spherical charge distributions
  • Knowledge of the concept of electric fields and their relationship to potential
  • Basic understanding of charge distribution on insulating materials
NEXT STEPS
  • Study the application of Gauss' Law for calculating electric fields around spherical shells
  • Learn about the concept of electric potential difference and its significance in electrostatics
  • Explore the effects of different charge distributions on electric potential
  • Investigate the relationship between electric potential and electric field strength
USEFUL FOR

Students and educators in physics, particularly those focusing on electrostatics, as well as anyone involved in electrical engineering or related fields seeking to deepen their understanding of electric potential in spherical charge configurations.

rsatchel
Messages
6
Reaction score
0

Homework Statement


A thin spherical shell with radius R1 = 2.00 cm is concentric with a larger thin spherical shell with radius 6.00 cm . Both shells are made of insulating material. The smaller shell has charge q1=+6.00nC distributed uniformly over its surface, and the larger shell has charge q2=−9.00nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells.

Part A: What is the electric potential due to the two shells at the following distance from their common center: r = 0?
Part B: What is the electric potential due to the two shells at the following distance from their common center: r = 3.00 cm ?
Part C: What is the electric potential due to the two shells at the following distance from their common center: r = 7.00 cm ?

Homework Equations


V = ∫E. dl = (k q) / r
Φ = q(enc) / ε0 = ∫E.dA

The Attempt at a Solution


I got Part A:
V for inner shell: V= (k q) / r = (8.99E9 * 6.00E-9) / 0.02 = 2700
V for outer shell: V = (k q) / r = (8.99E9 * -9.00E-9) / 0.06 = -1350
ΣV = 2700 + (-1350) = 1350V

I eventually got Part B:
V = -k q1 (1/0.03 - 1/0.02) = 899V
V = -k q2 (1/0.06 - 1/ 0.03) = -1350
ΣV = 899 - 1350 = -450V (Although the answer had to be changed to +450, not really sure why...Maybe V is magnitude)

I tried doing the same thing Idid for Part B for Part C and got stuck:
V = -k q1 (1/0.07 - 1/0.02) = 1930V
V = -k q2 (1/0.07 - 1/ 0.06) = -192V
ΣV = 1930 - 192 = 1740V, but that is apparently wrong...

I'm thoroughly confused :/

 
Physics news on Phys.org
Hi rsatchel, Welcome to Physics Forums.

For part B, the location of interest lies between the shells. So it has the potential of the outer shell's surface plus whatever potential it experiences from the inner shell at its distance from that shell.

For part C, the location is outside of both shells so the easiest approach is to draw a Gaussian surface at the same radius and apply Gauss' Law. What's the total charge contained within the Gaussian surface?
 
  • Like
Likes   Reactions: rsatchel
Ah, OK.
So I did q(net) = -3nC
V = (k q)( 1/inf - 1/0.07)
V = -(8.99E9 * -3E-9)(-1/0.007) = -385V
 
Ok, so now there's another part

What is the magnitude of the potential difference between the surfaces of the two shells?

I thought I would need to use:
V = ∫ E. dl = ∫ -(k q)/r dr (from A to B)
V = (-k q) / r again,
V = -k q( 1/B - 1/A)
but what would the limits be?

I thought maybe I should draw a Gaussian Surface at r=7cm and use the net charge to calculate the outer shell's potential and then do the same for the inner shell - didnt work.
I also tried doing the limits from the inner shell to the outer shell - didnt work.

Not sure what else to try :/
 
The potential at the surface of the outer shell will be due the total charge enclosed in a Gaussian surface immediately surrounding that shell.

The potential at the surface of the inner shell will be the potential due to that shell alone at its surface plus the potential due to the outer shell alone at that shell's surface (in passing into the interior space within the outer shell, the potential due to that outer shell is "remembered").

Have a look here for more details.
 
Thank you, that helped a lot!
 
gneill said:
The potential at the surface of the outer shell will be due the total charge enclosed in a Gaussian surface immediately surrounding that shell.

The potential at the surface of the inner shell will be the potential due to that shell alone at its surface plus the potential due to the outer shell alone at that shell's surface (in passing into the interior space within the outer shell, the potential due to that outer shell is "remembered").

Have a look here for more details.
hi could you make this link appear again "Have a look here for more details.[/QUOTE]"
 
SAADi_ak said:
hi could you make this link appear again "Have a look here for more details."
Unfortunately, website content often seems to "evaporate" over time. Alas that's not a website that I have any control over.

However, if you do a google search on appropriate terms you should be able to turn up similar content. Try searching on: "electric potential difference between charged concentric metallic shells".
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
12K
  • · Replies 2 ·
Replies
2
Views
2K