Electrical potential involving a spacecraft

Click For Summary
SUMMARY

The forum discussion centers on the calculations involved in the operation of the Deep Space 1 spacecraft, which utilized an ion drive engine to accelerate Xenon atoms at a maximum voltage of 1,300 volts. Key calculations include determining the mass of a single Xenon atom, the velocity of the atom post-acceleration, and the thrust produced by the engine based on the mass flow rate of the Xenon. The initial mass of the spacecraft was 486 kg, and it carried 74 kg of Xenon, operating for 678 days with a power supply of 2,100 watts from solar panels.

PREREQUISITES
  • Understanding of ion propulsion systems and their mechanics
  • Familiarity with the concepts of voltage and kinetic energy
  • Knowledge of Avogadro's number for atomic mass calculations
  • Basic principles of conservation of energy in physics
NEXT STEPS
  • Calculate the mass of a single Xenon atom using Avogadro's number
  • Apply the conservation of energy to determine the velocity of Xenon atoms after acceleration
  • Research thrust calculation methods for ion propulsion systems
  • Explore the implications of ion drive technology in modern spacecraft design
USEFUL FOR

Students studying aerospace engineering, physicists interested in propulsion systems, and engineers working on spacecraft design and optimization.

dmack15
Messages
7
Reaction score
0

Homework Statement


Been stuck on this problem. Any help will be greatly appreciated

1. The (actual) spacecraft Deep Space 1 tested an ion drive engine in which Xenon atoms
were accelerated (maximum voltage of 1,300 volts), neutralized and used to provide
thrust. The probe carried 74 kg of Xenon and fired it engines for 678 days. The electrical
power was supplied by solar panels which were capable of delivering 2,100 watts to the
engines. The initial mass of the probe was 486 kg and the ion engine was started while
the probe was in orbit around the sun. From this data estimate;

a. Calculate or look up the mass of a single Xenon atom in kg.
.1313 kgb. Assuming the Xenon atom is initially at rest what its velocity is after being accelerated through 1,300 volts.
i was thinking here to do conservation of energy involving electrical potential but it doesn't make sense

c. Using the data above, calculate the number of Xenon atoms that exited Deep Space 1 each second the drive was operating.d. The Thrust of the engine (in Newton’s second) is the Newton’s 3rd law reaction to the change in momentum due to the exiting Xenon atoms. Calculate this trust by multiplying the total mass of the Xenon atoms that leave the spacecraft in one second (see a and c) times the exiting velocity (in m/2, see b).e. Given that the initial mass of Deep Space 1, what was its initial acceleration.f. Given the final mass of Deep Space 1 (when all of its fuel was spent) what was
the final acceleration before the engine shut down

Homework Equations

The Attempt at a Solution



I have attempted at using conservation of energy in charge reactions but it doesn't seem to work. i need an equation involving velocity and voltage
 
Physics news on Phys.org
dmack15 said:

Homework Statement


Been stuck on this problem. Any help will be greatly appreciated

1. The (actual) spacecraft Deep Space 1 tested an ion drive engine in which Xenon atoms
were accelerated (maximum voltage of 1,300 volts), neutralized and used to provide
thrust. The probe carried 74 kg of Xenon and fired it engines for 678 days. The electrical
power was supplied by solar panels which were capable of delivering 2,100 watts to the
engines. The initial mass of the probe was 486 kg and the ion engine was started while
the probe was in orbit around the sun. From this data estimate;

a. Calculate or look up the mass of a single Xenon atom in kg.
.1313 kgb. Assuming the Xenon atom is initially at rest what its velocity is after being accelerated through 1,300 volts.
i was thinking here to do conservation of energy involving electrical potential but it doesn't make sense

c. Using the data above, calculate the number of Xenon atoms that exited Deep Space 1 each second the drive was operating.d. The Thrust of the engine (in Newton’s second) is the Newton’s 3rd law reaction to the change in momentum due to the exiting Xenon atoms. Calculate this trust by multiplying the total mass of the Xenon atoms that leave the spacecraft in one second (see a and c) times the exiting velocity (in m/2, see b).e. Given that the initial mass of Deep Space 1, what was its initial acceleration.f. Given the final mass of Deep Space 1 (when all of its fuel was spent) what was
the final acceleration before the engine shut down

Homework Equations

The Attempt at a Solution



I have attempted at using conservation of energy in charge reactions but it doesn't seem to work. i need an equation involving velocity and voltage

Welcome to the PF.

Your number in (a) is not right. Please re-check it. They are asking for the mass of a single atom.

Do you know if these atoms are singly-ionized? There is an equation to convert from keV to velocity (kinetic energy)...
 
Well the atomic mass of Xenon is 131.293 g/mol, so in kg it would be .1313kg/mol would it not?

Also for part b i have been trying to use the Kf + qVf = Ki + qVi (conservation of energy) but I do not know the value of the charge. So I'm thinking there might be an equation I am missing or something

A possible equation could be Voltage = E / q but once again i have no value for the charge
 
For (a) you have to calculate the mass of a single atom and not the molar mass. You'll need this to calculate the speed in (b).
When the meaning of the given voltage is that the ions are passed through a potential difference of such value. What is the work done by the electric field when an charge goes through a potential difference ΔV?
 
For (a) would it be .1313 divided by Avogadros number?

what about for part (b) i use the law of conservation which is Kf + qVf = Ki + qVi or Kf = Ki - qΔV and it starts from rest so Ki is 0,
essentially 1/2mv^2 = -qΔV
solve for v to find final speed

the problem is i don't know what the charge would be? Does neutralized mean it has no charge in the equation?
 
Yes, you will have to assume some charge for the ions.
And yes, neutralized means that they have no charge. But this happens after they are accelerated. So it has nothing to do with finding the speed.
 

Similar threads

Replies
2
Views
1K
Replies
6
Views
3K
Replies
15
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
14K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
55
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
5K
Replies
3
Views
6K