Electron Bands in 2D Semiconductor

  • Thread starter Thread starter StochasticHarmonic
  • Start date Start date
  • Tags Tags
    2d Electron
Click For Summary
SUMMARY

The discussion centers on the relationship between the density of states (DOS) in the conduction band and the phase space available for electrons in 2D semiconductors. It is established that when the effective mass of the conduction band electrons (##m_c##) exceeds that of the valence band holes (##m_v##), the conduction band DOS increases, indicating greater phase space for electrons. Additionally, it is clarified that at finite temperatures, holes exhibit a wider energy distribution compared to electrons, leading to a downward shift in the energy of the half-filled state due to the Boltzmann distribution effects.

PREREQUISITES
  • Understanding of density of states (DOS) in semiconductor physics
  • Familiarity with effective mass concepts in solid-state physics
  • Knowledge of Boltzmann statistics and thermal distributions
  • Basic principles of 2D semiconductor behavior
NEXT STEPS
  • Study the relationship between effective mass and density of states in semiconductors
  • Explore the implications of Boltzmann statistics on electron and hole distributions
  • Investigate the concept of phase space in quantum mechanics
  • Learn about temperature effects on semiconductor energy bands and carrier distributions
USEFUL FOR

Students and researchers in condensed matter physics, semiconductor device engineers, and anyone interested in the electronic properties of 2D materials.

StochasticHarmonic
Messages
1
Reaction score
1
Homework Statement
The given energy dispersion is:
\begin{equation}
E(p) =
\begin{cases}
-p^2/2m_v & \text{if } E \leq 0 \\
p^2/2m_c+\Delta & \text{if } E > 0
\end{cases}
\end{equation}
Where ##m_c## and ##m_v## are the effective masses of the conduction and valence band electrons.

Part A begins with derivation of the energy dependent DOS, which is fairly simple to find using the 2D density of states relation:
\begin{equation}
\frac{2}{\pi^2 \hbar} \frac{d^2 p}{dE} = D(E)
\end{equation}
to be:
\begin{equation}
D(E)=\{\begin{array}{cc}\frac{m_v}{\pi \hbar^2 },&\mbox{ if } E\leq 0\\ \frac{m_c}{\pi \hbar^2 }, & \mbox{ if } E>\Delta\end{array}
\end{equation}
Then for part b we use the fact that the total number of electrons are fixed:

\begin{equation}
\int_{E_F}^{\infty} f(E)D(E) \, dE = \int^{E_F}_{-\infty} (1-f(E))D(E) \, dE
\end{equation}
To derive the equation:
\begin{equation}
-\beta m_c E_D+m_c ln[1+e^{-\beta(\mu-\Delta)}]=m_vln[1+e^{- \beta \mu}]
\end{equation}
Which gives us a relation for our chemical potential.

My Question comes from the following qualitative question: Assume the semiconductor is intrinsic, where ##E_D=0##, or the valence band is filled and conduction band empty at T=0, How does the chemical potential change with increasing temperature for ##m_c>m_v##?
Relevant Equations
When ##E_D=0##, equation 5 becomes:

\begin{equation}
m_c ln[1+e^{-\beta(\mu-\Delta)}]=m_vln[1+e^{- \beta \mu}]
\end{equation}
Question is stated below:
In the questions solution, they conceptually discuss how the DOS for the conduction band becomes larger when ##m_c## is larger than ##m_v##. This then implies that there is "more phase space for electrons than holes", which confuses me. How can you make a statement about the phase space of electrons based only on the conduction band DOS being larger than the valence band DOS?

They go on to make another few statements which confuse me; "at finite temperature the holes must spread wider in energy compared to electrons. This means that with increasing temperature, the half-filled state must shift down in energy so the Boltzmann Tail of the distribution |E-mu|>>T has larger overlap with the valence band."

If anyone could provide some clarity on this conceptually, that would be extremely beneficial. I'm confused on how the conduction band DOS is proportional to the phase space of the electrons, and I'm also confused on what the half filled state is, and also why the holes energy spreads out with finite temperature.

Thank you.
 
Last edited:

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K