Electrostatic Potential Energy of an ion

  • Thread starter mateomy
  • Start date
  • #1
307
0
Working from Krane's Modern Physics 11.5

Calculate the first 3 contributions to the electrostatic potential energy of an ion in the CsCl lattice.

I believe the formula I'm supposed to use is
[tex]
U_{c}\,=\,-\alpha\frac{e^{2}}{4\pi\epsilon_{0}R}
[/tex]

Just from looking in the chapter I can see this is a bcc type lattice with an [itex]\alpha[/itex] of 1.7627, but I'm not sure how they're getting the answer in the back of the book which is;
[tex]
U_{c}\,=\,-\frac{e^{2}}{4\pi\epsilon_{0}R}\left(8-\frac{6}{2/\sqrt{3}} + \frac{24}{\sqrt{11/3}}\right)
[/tex]
There's an example in the book showing the same procedure for an fcc lattice (NaCl) and that converging term is,
[tex]
6-\frac{12}{\sqrt{2}}+\frac{8}{\sqrt{3}}-\ldots
[/tex]
but it doesn't derive it, so I'm not really sure how they get it.

Just looking for a few pointers, thanks.
 

Answers and Replies

  • #2
307
0
Figured it out.
 

Related Threads on Electrostatic Potential Energy of an ion

Replies
5
Views
4K
Replies
1
Views
976
  • Last Post
Replies
5
Views
499
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
1
Views
1K
Replies
2
Views
885
Replies
1
Views
2K
Replies
0
Views
3K
Top