Electrostatics: Find relative permitivitty

Click For Summary
SUMMARY

The discussion centers on calculating the relative permittivity (Ɛr1 and Ɛr2) of a spherical capacitor with two linear and uniform dielectrics under a constant voltage U. The removal of the second dielectric results in the inner electric field decreasing by one-third and the outer electric field doubling. The calculations yield Ɛr2 = 6 and Ɛr1 = 36017.1, contradicting the book's solution of Ɛr2 = 3 and Ɛr1 = 6. The key equations utilized include Gauss's law and the integral forms for electric field intensity and energy stored in the capacitor.

PREREQUISITES
  • Understanding of Gauss's law in electrostatics
  • Familiarity with spherical capacitors and dielectric materials
  • Knowledge of electric field intensity calculations
  • Ability to perform integrals involving electric fields and charge distributions
NEXT STEPS
  • Study the application of Gauss's law in various geometries
  • Research the properties of dielectrics and their impact on electric fields
  • Learn about energy storage in capacitors and related equations
  • Explore advanced topics in electrostatics, such as boundary conditions and potential differences
USEFUL FOR

Students and professionals in physics and electrical engineering, particularly those focusing on electrostatics, capacitor design, and dielectric materials.

gruba
Messages
203
Reaction score
1

Homework Statement


Spherical capacitor with two linear and uniform dielectrics with relative permitivitty Ɛr1 and Ɛr2 is connected to constant voltage U. When second dielectric is removed, intensity of electric field by inner electrode is reduced by 1/3, and electric field by outer electrode is increased two times. a=1.5mm, b=6mm, c=12mm. Calculate Ɛr1 and Ɛr2.

Homework Equations


Gauss law

The Attempt at a Solution


In the first case (two dielectrics), Gauss law gives E_1^{(1)}=\frac{Q}{4\pi\epsilon_0\epsilon_{r1}r^2},a<r<b
E_2^{(1)}=\frac{Q}{4\pi\epsilon_0\epsilon_{r2}r^2},b<r<c
U^{(1)}=\int_a^b \frac{Q}{4\pi\epsilon_0\epsilon_{r1}r^2}\mathrm dr+ \int_b^c \frac{Q}{4\pi\epsilon_0\epsilon_{r2}r^2}\mathrm dr=\frac{Q}{4\pi\epsilon_0}\left(\frac{b-a}{\epsilon_{r1}ab}+\frac{c-b}{\epsilon_{r2}bc}\right)
In the second case (second dielectric is removed),
E_1^{(2)}=\frac{Q}{12\pi\epsilon_0\epsilon_{r1}r^2}
E_2^{(2)}=\frac{Q}{2\pi\epsilon_0r^2}
U^{(2)}=\frac{Q}{2\pi\epsilon_0}\left(\frac{b-a}{\epsilon_{r1}ab}+\frac{c-b}{bc}\right)
E_1^{(2)}=\frac{1}{3}\times E_1^{(1)}\Rightarrow \frac{Q^{(2)}}{4\pi\epsilon_0\epsilon_{r1}r^2} = \frac{1}{3}\frac{Q^{(1)}}{4\pi\epsilon_0\epsilon_{r1}r^2}\Rightarrow Q^{(2)}=\frac{Q^{(1)}}{3}
E_2^{(2)}=2\times E_2^{(1)}
\frac{Q^{(2)}}{4\pi\epsilon_0 r^2} = 2\frac{Q^{(1)}}{4\pi\epsilon_0\epsilon_{r2} r^2}
From these equations, I get that \epsilon_{r2}=6
U^{(1)}=\int_a^b \frac{Q}{4\pi\epsilon_0\epsilon_{r1}r^2}\mathrm dr+ \int_b^c \frac{Q}{4\pi\epsilon_0\epsilon_{r2}r^2}\mathrm dr=\frac{Q^{(1)}}{4\pi\epsilon_0}\left(\frac{b-a}{\epsilon_{r1}ab}+\frac{c-b}{\epsilon_{r2}bc}\right)
U^{(2)}=\frac{Q^{(2)}}{4\pi\epsilon_0}\left(\frac{b-a}{\epsilon_{r1}ab}+\frac{c-b}{bc}\right)
U^{(1)}=U^{(2)}\Rightarrow \epsilon_{r1}=36017.1

In my book's solution \epsilon_{r2}=3 and \epsilon_{r1}=6
Could someone please check this?
 

Attachments

  • image.PNG
    image.PNG
    7.2 KB · Views: 421
Physics news on Phys.org
gruba said:

Homework Statement


Spherical capacitor with two linear and uniform dielectrics with relative permitivitty Ɛr1 and Ɛr2 is connected to constant voltage U. When second dielectric is removed, intensity of electric field by inner electrode is reduced by 1/3, and electric field by outer electrode is increased two times. a=1.5mm, b=6mm, c=12mm. Calculate Ɛr1 and Ɛr2.

Homework Equations


Gauss law

The Attempt at a Solution


In the first case (two dielectrics), Gauss law gives E_1^{(1)}=\frac{Q}{4\pi\epsilon_0\epsilon_{r1}r^2},a<r<b
E_2^{(1)}=\frac{Q}{4\pi\epsilon_0\epsilon_{r2}r^2},b<r<c
U^{(1)}=\int_a^b \frac{Q}{4\pi\epsilon_0\epsilon_{r1}r^2}\mathrm dr+ \int_b^c \frac{Q}{4\pi\epsilon_0\epsilon_{r2}r^2}\mathrm dr=\frac{Q}{4\pi\epsilon_0}\left(\frac{b-a}{\epsilon_{r1}ab}+\frac{c-b}{\epsilon_{r2}bc}\right)
In the second case (second dielectric is removed),
E_1^{(2)}=\frac{Q}{12\pi\epsilon_0\epsilon_{r1}r^2}
E_2^{(2)}=\frac{Q}{2\pi\epsilon_0r^2}
U^{(2)}=\frac{Q}{2\pi\epsilon_0}\left(\frac{b-a}{\epsilon_{r1}ab}+\frac{c-b}{bc}\right)
E_1^{(2)}=\frac{1}{3}\times E_1^{(1)}\Rightarrow \frac{Q^{(2)}}{4\pi\epsilon_0\epsilon_{r1}r^2} = \frac{1}{3}\frac{Q^{(1)}}{4\pi\epsilon_0\epsilon_{r1}r^2}\Rightarrow Q^{(2)}=\frac{Q^{(1)}}{3}
E_2^{(2)}=2\times E_2^{(1)}
\frac{Q^{(2)}}{4\pi\epsilon_0 r^2} = 2\frac{Q^{(1)}}{4\pi\epsilon_0\epsilon_{r2} r^2}
From these equations, I get that \epsilon_{r2}=6
U^{(1)}=\int_a^b \frac{Q}{4\pi\epsilon_0\epsilon_{r1}r^2}\mathrm dr+ \int_b^c \frac{Q}{4\pi\epsilon_0\epsilon_{r2}r^2}\mathrm dr=\frac{Q^{(1)}}{4\pi\epsilon_0}\left(\frac{b-a}{\epsilon_{r1}ab}+\frac{c-b}{\epsilon_{r2}bc}\right)
U^{(2)}=\frac{Q^{(2)}}{4\pi\epsilon_0}\left(\frac{b-a}{\epsilon_{r1}ab}+\frac{c-b}{bc}\right)
U^{(1)}=U^{(2)}\Rightarrow \epsilon_{r1}=36017.1

In my book's solution \epsilon_{r2}=3 and \epsilon_{r1}=6
Could someone please check this?
The question mentions that the electric field is reduced BY 1/3 and not to 1/3 as you have assumed.The rest of it seems right.
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
671
Replies
11
Views
1K
Replies
12
Views
3K
Replies
6
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
12
Views
2K