electric field

1. Find the electric field inside and outside of a spherical shell superposition

Hi! I need help with this problem. I tried to solve it by saying that it would be the same as the field of a the spherical shell alone plus the field of a point charge -q at A or B. For the field of the spherical shell I got $E_1=\frac{q}{a\pi\epsilon_0 R^2}=\frac{\sigma}{\epsilon_0}$ and for...
2. Electric energy density in the dielectric of a coaxial cable

V(ρ) = V_o*ln(ρ/0.0018)/ln(45/180) (Attached picture is where the unit vector of r is really ρ.) In cylindrical coordinates ∇V = ρ*dV/dρ + 0 + 0 ∇V =derivative[V_o*ln(ρ/0.0018)/1.386]dρ ∇V = V_o*0.0018/(1.386*ρ) E = V_o*0.0012987/ρ Work = 0.5∫∫∫εE•E dv Bounds: 0.0018 to 0.00045 m D = εE =...
3. Electric Flux through a circle

Hi! My main problem is that I don't understand what the problem is telling me. What does it mean that the surface is a flast disc bounded by the circle? Is the Gauss surface the disc? Does that mean that inside the circle in the figure, there is a disc? Can you give me some guidance on how to...
4. Electric Field from its Potential of a Half Circle along its Z axis

So I figured out the potential is: dV = (1/(4*Pi*Epsilon_0))*[λ dl/sqrt(z^2+a^2)] . From that expression: We can figure out that since its half a ring we have to integrate from 0 to pi*a, so we would get: V = (1/(4*Pi*Epsilon_0))*[λ {pi*a]/sqrt(z^2+a^2)] In that expression: a = sqrt(x^2+y^2)...
5. Find the Electric Field E using Gauss' Law

I tried to work out both a) and b), but I am not sure if I am correct. I drew a picture with a sphere around q first with radius r and then with radius 3r. For a) $E.A=\frac {q}{ε_°}$ (when using Gauss' Law) Since $A=4πr^2$, I substituted this in the equation and solved for E giving me...
6. Find the charge of a mass hanging from a pendulum in an electric field

Hi, so I was able to solve this problem by just equating the forces (Tension, mg, and EQ). But I thought I could also solve this problem with Conservation of Energy. However, I calculated it several times, and I never get the right answer this way. Doesn't the Electric Field do the work to put...
7. I Plasma ball radio-frequency energy

I read Wikipedia's description of how a plasma ball works. Question: What kind of energy is the "radio-frequency energy from the transformer"? Is in the form of electric field energy, magnetic field energy, or both? Thank you! (from Wikipedia)... Although many variations exist, a plasma lamp is...
8. Ion migration by diffusion in an electric field

Hi, A solution contains some ions (charged particles). We are only interested in my exemple to positive ions. It is assumed that these ions acquired some mobility under a concentration gradient. Their direction is A to B. Then these ions encounter/cross an electric field which is oriented from B...

28. Amplitude of a mass joined to a spring in the presence of an E-field

1. Homework Statement A block of mass m having charge q placed on smooth horizontal table and is connected to a wall thorough an unstretched spring of constant k . A horizontal electric field E parallel to spring is switched on. Find the ampliture of the shm by the block. 2. Homework...
29. Electric field of a non-conducting sphere

1. Homework Statement A solid non-conducting sphere of radius R carries a uniform charge density. At a radial distance r1= R/4 the electric field has a magnitude Eo. What is the magnitude of the electric field at a radial distance r2=2R? 2. Homework Equations Gauss's Law: ∫EdA=Qencl / ε0...
30. Voltage drop in a metal

Metals are highly effective at screening electric fields. If we place two contacts reasonably far away from each other on a piece of metal and apply a voltage bias, the charge carriers in the section that is far enough from both the contacts should be unaffected by the electric field. Why then...