Elements in Sets: Check/Confirm Answers

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Elements Sets
Click For Summary
SUMMARY

The discussion revolves around the validity of mathematical expressions involving natural numbers, specifically the comparison of elements within the set of natural numbers, denoted as ##\mathbb N##. Participants confirm that while certain expressions are valid, the inclusion of negative numbers, such as -2, raises questions about the definition of the universal set. The consensus is that if ##\mathbb N## is the universal set, then -2 is not a valid element, making comparisons like ##-2 < x## invalid. The conversation emphasizes the importance of understanding set definitions and their implications in mathematical operations.

PREREQUISITES
  • Understanding of set theory and notation, particularly regarding natural numbers and universal sets.
  • Familiarity with mathematical comparisons and inequalities.
  • Basic knowledge of mathematical operations involving natural numbers.
  • Concept of type coercion in programming languages as it relates to mathematical operations.
NEXT STEPS
  • Research the definitions and properties of natural numbers in set theory.
  • Explore the implications of universal sets in mathematical expressions.
  • Study the concept of type coercion and its application in both mathematics and programming.
  • Investigate the differences between natural numbers, integers, and real numbers.
USEFUL FOR

Students of mathematics, educators teaching set theory, and anyone interested in the foundations of mathematical logic and operations involving natural numbers.

Math100
Messages
817
Reaction score
230
Homework Statement
Write each of the following sets by listing their elements between braces.
Relevant Equations
None.
Can anyone please check/confirm my answers if they are correct or not? I boxed around my answers just to be clear and understanding. Thank you.
 

Attachments

  • Work.jpg
    Work.jpg
    39 KB · Views: 200
Physics news on Phys.org
Math100 said:
Homework Statement:: Write each of the following sets by listing their elements between braces.
Relevant Equations:: None.

Can anyone please check/confirm my answers if they are correct or not? I boxed around my answers just to be clear and understanding. Thank you.
They look fine.
 
  • Like
  • Love
Likes   Reactions: Delta2 and Math100
So my answers are correct?
 
Math100 said:
So my answers are correct?
Yes, although any thoughts on whether the second question is valid?
 
  • Like
Likes   Reactions: Math100
It looks ok. For (2), some people consider 0 to be a natural number.
 
It depends whether the notation, ##\{x \in \mathbb N: \dots \}## implies that ##\mathbb N## is the universal set under consideration. In that case, ##-2 \notin \mathbb N## and the comparison ##-2 < x## is not valid.

Or, if we consider that in all cases ##\mathbb N \subset \mathbb Z## and that it's valid to talk about ##-2## even when nominally restricting our attention to ##\mathbb N##, then it's fine.

I'm not saying one way or the other, but the question just didn't look right to me.
 
Thank you guys for the help! I really appreciate it!
 
  • Like
Likes   Reactions: Delta2
Math100 said:
Thank you guys for the help! I really appreciate it!
What do you think? Is the condition ##-2 < x## valid for ##x \in \mathbb N##?
 
PeroK said:
What do you think? Is the condition ##-2 < x## valid for ##x \in \mathbb N##?
Yes.
 
  • #10
PeroK said:
It depends whether the notation, ##\{x \in \mathbb N: \dots \}## implies that ##\mathbb N## is the universal set under consideration. In that case, ##-2 \notin \mathbb N## and the comparison ##-2 < x## is not valid.
By that reasoning, it would not be possible to say whether "1<x" is valid, since we could take the 1 as an element of that ##\mathbb Z## or ##\mathbb R##.
Similarly, I could not write x-1 since that is shorthand for x+(-1).

Seems more reasonable to apply the programming language concept of type coercion. An element of ##\mathbb N## can be 'elevated' to ##\mathbb Z## etc. as necessary to make the operation valid.

Whether the result can be demoted to conform to the target variable type is another matter.
 
  • Informative
Likes   Reactions: Delta2
  • #11
haruspex said:
By that reasoning, it would not be possible to say whether "1<x" is valid, since we could take the 1 as an element of that ##\mathbb Z## or ##\mathbb R##.
Similarly, I could not write x-1 since that is shorthand for x+(-1).

Seems more reasonable to apply the programming language concept of type coercion. An element of ##\mathbb N## can be 'elevated' to ##\mathbb Z## etc. as necessary to make the operation valid.

Whether the result can be demoted to conform to the target variable type is another matter.
Usually ##\mathbb R## is implied at the universal set and ##\mathbb Z \subset \mathbb R##.

The point about the question is that it explicitly defines the universal set as ##\mathbb N## and then talks about ##-2##, which is not defined within ##\mathbb N##.

Anyway, my main point is that it's definitely worth thinking about if you want to study pure maths,
 
  • Informative
Likes   Reactions: Delta2
  • #12
haruspex said:
Similarly, I could not write x-1 since that is shorthand for x+(-1).
If you are dealing with natural numbers, that can't be right, as natural numbers have no additive inverse. Instead ##n - m## is defined to be the natural number ##k## such that ##m + k = n##.

In general, ##n - m## is not well defined for all pairs of natural numbers. That IS important.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
5K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K