Theorem: Suppose that p is an odd prime and p≡2 (mod 3). Let E be the elliptic curve defined by [tex]y^2 = x^3 + 17[/tex]. Then [tex]N_p[/tex], the number of solutions mod p of the elliptic curve E, is exactly equal to p.(adsbygoogle = window.adsbygoogle || []).push({});

[hint: if p is a prime, then [tex]1^k, 2^k, ..., (p-1)^k[/tex] form a reduced residue system (mod p) if and only if gcd(k, p-1)=1.]

Does anyone have any idea how to prove that [tex]N_p = p[/tex]?

Any help is greatly appreciated! :) (If possible, please explain in simpler terms. In particular, I have no background in abstract algebra.)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Elliptic Curve y^2 = x^3 +17; show N_p = p

**Physics Forums | Science Articles, Homework Help, Discussion**