MHB Emwhy's question at Yahoo Answers regarding finding extrema in a given region

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Extrema
AI Thread Summary
The discussion centers on finding the extreme values of the function f(x,y) = 6x^2 + 3y^2 - 36x - 1 within the region defined by x^2 + y^2 ≤ 36, using methods such as Lagrange multipliers and critical point analysis. The critical point found inside the region is (3,0), which is identified as a relative minimum. The boundary is examined using parametric equations, leading to critical points at (6,0) and (-6,0). The analysis concludes that the absolute maximum value is 431 at (-6,0) and the absolute minimum value is -55 at (3,0). This comprehensive approach effectively identifies the extrema within the specified region.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find the extreme values of f, on a given region? Using LaGrange multipliers?


Find the extreme values of f(x,y) = 6x^2+3y^2-36x-1, on the region described by x^2+y^2 <=36.

I'm pretty sure you have to use LaGrange multipliers. I ended up with lamba=0, x=3, y= +/-sqrt(27) which doesn't seem right. Additional Details

Actually I just got the absolute minimum value by taking partial derivatives of f with respect to x and y. How do I get the absolute max?

I have posted a link there to this thread so the OP can see my work.
 
Mathematics news on Phys.org
Re: emwhy's question at Yahoo! Questions regarding finding extrema in a given region

Hello emwhy,

First, let's find the critical values inside the given region. We do this by equating the partials to zero, and solving the resulting system:

We are given:

$$f(x,y)=6x^2+3y^2-36x-1$$

Hence:

$$f_x(x,y)=12x-36=12(x-3)=0$$

$$f_y(x,y)=6y=0$$

This gives us the critical point $(x,y)=(3,0)$. Since its distance from the origin is less than $6$, we know it is within the circular region.

Next, we may employ the second partials test to determine the nature of the critical point.

Let:

$$D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left(f_{xy}(x,y) \right)^2$$

Thus:

$$D(x,y)=12\cdot6-\left(0 \right)^2=72>0$$

Since $$f_{xx}(3,0)=12>0$$ we conclude that the critical point $(3,0)$ is a relative minimum.

Now we want to check the boundary. In order to examine $f$ on the boundary of the region, we may represent the circle $x^2+y^2=6^2$ by means of the parametric equations $x=6\cos(t),\,y=6\sin(t),\,0\le t\le 2\pi$. Thus, on the boundary we can write $f$ as a function of a single variable $t$:

$$f(\cos(t),\sin(t))=f(t)=6\left(6\cos(t) \right)^2+3\left(6\sin(t) \right)^2-36\left(6\cos(t) \right)-1=108\cos^2(t)-216\cos(t)+107$$

Differentiating with respect to $t$ and equating to zero, we find:

$$f'(t)=-216\cos(t)\sin(t)+216\sin(t)=216\sin(t)\left(1-\cos(t) \right)=0$$

This gives us the critical values for $t$:

$$t=0,\,\pi,\,2\pi$$

Since the first and third critical values are boundary values for $t$, and because the parametrization of $x$ and $y$ have the same value for these two values, we need only consider:

$$t=0,\,\pi$$

This gives us the two critical points:

$$\left(x(0),y(0) \right)=(6,0)$$

$$\left(x(\pi),y(\pi) \right)=(-6,0)$$

Now, we may use the second derivative test to determine the nature of these extrema. Let's write the first derivative as:

$$f'(t)=-108\sin(2t)+216\sin(t)$$

Differentiating, we find:

$$f''(t)=-216\cos(2t)+216\cos(t)$$

Checking the critical values:

$$f''(0)=0$$

The second derivative test is inconclusive for this point, so using the first derivative test, we find:

$$f'\left(\frac{\pi}{2} \right)=216>0$$

$$f'\left(\frac{3\pi}{2} \right)=-216<0$$

Hence the point $(6,0)$ is a relative minimum.

$$f''(\pi)=-432<0$$

Hence the point $(-6,0)$ is a relative maximum.

So, we now know:

$$f_{\max}=f(-6,0)=6(-6)^2+3(0)^2-36(-6)-1=431$$

$$f_{\min}=f(3,0)=6(3)^2+3(0)^2-36(3)-1=-55$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top