EEristavi
- 108
- 5
- Homework Statement
- A uniform ball of radius r rolls without slipping down from
the top of a sphere of radius R. Find the angular velocity of the ball
at the moment it breaks off the sphere. The initial velocity of the
ball is negligible.
- Relevant Equations
- K = I w^2 / 2
T = F R
U = m g h
I write Conservation of Energy:
Potential Energy loss(change):
U = m g ##\Delta##h = m g (R+r) (1-cos##\alpha##)
kinetic Energy gain(change):
K = (##\frac {m v^2} 2## + ##\frac {I \omega^2} 2##) + (##\frac {M v_2^2} 2## + ##\frac {I_2 \omega_2^2} 2##)
U = K
m g (R+r) (1-cos##\alpha##) = (##\frac {m v^2} 2## + ##\frac {I \omega^2} 2##) + (##\frac {M v_2^2} 2## + ##\frac {I_2 \omega_2^2} 2##)
-----------------
However,
In the solution we have:
m g (R+r) (1-cos##\alpha##) = ##\frac {m v^2} 2## + ##\frac {I \omega^2} 2##
-----------------
As I understand,
big ball doesn't roll (Or we don't consider it's rolling and movement).Need help here..
Potential Energy loss(change):
U = m g ##\Delta##h = m g (R+r) (1-cos##\alpha##)
kinetic Energy gain(change):
K = (##\frac {m v^2} 2## + ##\frac {I \omega^2} 2##) + (##\frac {M v_2^2} 2## + ##\frac {I_2 \omega_2^2} 2##)
U = K
m g (R+r) (1-cos##\alpha##) = (##\frac {m v^2} 2## + ##\frac {I \omega^2} 2##) + (##\frac {M v_2^2} 2## + ##\frac {I_2 \omega_2^2} 2##)
-----------------
However,
In the solution we have:
m g (R+r) (1-cos##\alpha##) = ##\frac {m v^2} 2## + ##\frac {I \omega^2} 2##
-----------------
As I understand,
big ball doesn't roll (Or we don't consider it's rolling and movement).Need help here..