Energy Density with a Dielectric

AI Thread Summary
The discussion centers on the confusion regarding the electric field changes when a dielectric is introduced in a capacitor. The correct relationship for the electric field with a dielectric is E' = E/Ke, but this only applies if the capacitor is disconnected from the battery before adding the dielectric. The equation E = V/d is valid for parallel plate capacitors, but the stored energy should be calculated by dividing the total energy by the volume for accuracy. A key mistake was using the permittivity (ε) for both vacuum and dielectric instead of just for the dielectric. Understanding the distinction in energy density equations is crucial for solving these problems correctly.
racecar_
Messages
2
Reaction score
0
Homework Statement
Two parallel plates, having a vacuum in between them, are separated by d=0.01 m apart and are connected to a battery maintaining 9V between the plates and a charge of Q0 magnitude on each plate. The separation between the plates is then raised to 2d, the battery voltage is increased to 18V, and a dielectric is added with dielectric constant 2. What is the energy density difference after the addition of the dielectric?
Relevant Equations
energy density = (1/2)εE^2
I am confused about how the electric field changes in this problem - is E' = E/Ke=E/2? Is E = V/d a correct usage?

When I solve it this way, the answer is incorrect:
change in energy density = (1/2)ε(E'2- E2) = (1/2)ε(E2/4 - E2) = (1/2)ε(-3/4)(V/2d)2.

What am I doing wrong? Thanks.
 
Physics news on Phys.org
racecar_ said:
I am confused about how the electric field changes in this problem - is E' = E/Ke=E/2?
This equation does not apply in your situation. This equation would be valid if, after charging the capacitor, you disconnect the capacitor from the battery and then add the dielectric.

racecar_ said:
Is E = V/d a correct usage?
Yes. This is generally valid for any parallel plate capacitor.
 
The obvious approach is to calculate the stored energy in each case and divide by the volume.
 
  • Like
Likes racecar_, nasu and TSny
TSny said:
This equation does not apply in your situation. This equation would be valid if, after charging the capacitor, you disconnect the capacitor from the battery and then add the dielectric.
So the electric field will stay the same? For the equation energy density = (1/2)εE^2, what changes then?

kuruman said:
The obvious approach is to calculate the stored energy in each case and divide by the volume.
Yeah, I think it's a better approach. In what situations should I use finding the stored energy and dividing the volume rather than (1/2)εE^2, and vice versa? Thanks.
 
Either approach should work if you know what you’re doing. Here you made a key mistake by using ε for both vacuum and dielectric between the plates instead of for only the dielectric.
 
racecar_ said:
So the electric field will stay the same?
Yes.

racecar_ said:
For the equation energy density = (1/2)εE^2, what changes then?
Following up a little on @kuruman's post. The energy density of an electric field in a vacuum is ## \frac1 2 \varepsilon_0 E^2##. This expression is modified for an electric field inside a dielectric. Have you covered this in your course?

If not, then use the approach of finding the stored energy divided by the volume.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top