Are Kinetic and Potential Energy Densities Equal in Stationary Waves?

Click For Summary
SUMMARY

The discussion centers on the relationship between kinetic and potential energy densities in stationary waves, specifically proving they are not equal. The key equations referenced include the 1-D Wave Equation and the total energy density formula, which is expressed as \( w = \frac{\mu}{2}\bigg[ v^{2}\big(\frac{\partial \psi}{\partial x} \big)^{2}+\big( \frac{\partial \psi}{\partial t} \big)^{2} \bigg] \). The analysis shows that substituting the derivatives of the wave function into the energy density equation leads to a contradiction, confirming that kinetic and potential energy densities are not equal. The discussion also clarifies the definition of stationary waves as the result of two traveling waves moving in opposite directions.

PREREQUISITES
  • 1-D Wave Equation
  • Stationary Wave Definition
  • Partial Derivatives in Wave Functions
  • Total Energy Density in Waves
NEXT STEPS
  • Study the derivation of the 1-D Wave Equation
  • Explore the properties of stationary waves and their formation
  • Learn about energy density calculations in wave mechanics
  • Investigate the implications of wave superposition in physics
USEFUL FOR

Physics students, educators, and researchers focusing on wave mechanics, particularly those interested in energy dynamics within stationary waves.

bananabandana
Messages
112
Reaction score
5

Homework Statement


Show that the potential and kinetic energy densities for a stationary wave are not equal.

Homework Equations


A) The 1-D Wave Equation:
$$ \frac{\partial^{2} \psi}{\partial x^{2}} = \frac{1}{v^{2}} \frac{\partial^{2}\psi}{\partial t^{2}}$$
B) The general form of a stationary wave: (?)
$$ \psi(x,t) = f(x+vt) +f(x-vt) $$

C)Formula for total energy density in a stationary wave: (w)
$$ w = \frac{\mu}{2}\bigg[ v^{2}\big(\frac{\partial \psi}{\partial x} \big)^{2}+\big( \frac{\partial \psi}{\partial t} \big)^{2} \bigg] $$

The Attempt at a Solution


i) Work out the partial derivatives of ## \psi(x,t) ##
Let $$ z_{0} =x+vt , z_{1}=x-vt $$

$$ \implies \psi(x,t) = f(z_{0})+f(z_{1}) $$
$$ \frac{\partial \psi}{\partial x} = f'(z_{0})+f'(z_{1}) $$
$$ \frac{\partial \psi}{\partial t} = v[f'(z_{0}) -f'(z_{1})] $$

ii) If the kinetic and potential energy densities are equal it implies:

$$ v^{2} \big(\frac{\partial \psi}{\partial x} \big)^{2} = \big( \frac{\partial \psi}{\partial t} \big)^{2} $$

iii) So substitute the values from i) into this, get:

$$ [f'(z_{0})+f'(z_{1})]^{2} = [f'(z_{0})-f'(z_{1})]^{2} $$

Which is not, in general true, therefore proved?

But I'm not sure I used the correct form for the equation of the stationary wave, or is this still acceptable?

Thanks!
 
Physics news on Phys.org
I think the equation you used that is the general solution for the wave equation. In my opinion, the form of the standing wave is give as follows
Ψ(x,t)=g(x)f(t)
 
  • Like
Likes   Reactions: bananabandana
Yes, but a stationary wave is by definition formed from two traveling waves moving in opposite directions which means it can then be rewritten in the form
that you suggest with the time and space separated?
Or is that not right?
 
bananabandana said:
Yes, but a stationary wave is by definition formed from two traveling waves moving in opposite directions
No, the definition is as Vipho posted. It is a matter of deduction that two traveling waves of the same amplitude, frequency and speed moving in opposite directions, and satisfying the wave equation, form a standing wave.
 
  • Like
Likes   Reactions: bananabandana

Similar threads

Replies
13
Views
2K
Replies
8
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
6
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
2
Views
1K