A Energy Levels and Wave Functions of Identical Particle Systems

Rafaelmado
Messages
2
Reaction score
0
TL;DR Summary
Consider a system of two noninteracting spin 1/2 identical particles moving in a common
external harmonic oscillator potential.
a) Find the energy levels of the ground state and the first excited state.
b) Find the wave functions (in the coordinate representation) of the ground state and the first excited state.
Hints: For a particle of mass m in a harmonic potential of angular frequency ω, the energy of the particle in the n = 0, 1, 2,... state is given by (n + 1/2)ħω; the wave functions for the ground state (n = 0) φ0(x') and the first excited state (n = 1) φ1(x') are given by φ0(x') = 1/sqrt(sqrt(π)R) e−x'2/(2R²) , φ1(x') = sqrt(2/sqrt(π)R³)x'e−x'2/(2R²), with R = sqrt(ħ/(mω)). You can use a table of Clebsch-Gordan coefficients.
 
Physics news on Phys.org
This is a homework problem and needs to be posted in the appropriate homework forum, with the homework template filled out.

This is the third such problem you have posted in a fairly short time. Please do not post any further homework problems in a forum that is not a homework forum. If you do, you will receive a warning.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...

Similar threads

Replies
6
Views
2K
Replies
1
Views
2K
Replies
21
Views
2K
Replies
11
Views
1K
Replies
0
Views
1K
Replies
7
Views
1K
Back
Top