Energy of Electon and Energy of the Field

  • Context: Graduate 
  • Thread starter Thread starter ghotra
  • Start date Start date
  • Tags Tags
    Energy Field
Click For Summary
SUMMARY

The energy of an electron at rest is defined as mc², but due to the uncertainty principle, an electron cannot truly be at rest, implying its energy is always greater than mc². The discussion clarifies that energy is frame-dependent, with the energy of an electron differing based on the observer's reference frame. It establishes that the energy stored in the electric and magnetic fields created by the electron is distinct from the electron's rest energy. The relationship between the energy of a particle and the fields it generates is complex and requires consideration of quantum mechanics and special relativity.

PREREQUISITES
  • Understanding of the uncertainty principle in quantum mechanics
  • Familiarity with special relativity and four-momentum
  • Knowledge of electric and magnetic fields in classical electromagnetism
  • Basic concepts of quantum field theory (QFT)
NEXT STEPS
  • Study the implications of the uncertainty principle on particle states
  • Explore the Lorentz transformations and their effects on energy and momentum
  • Investigate the relationship between mass and energy in quantum field theory
  • Learn about the energy density of electromagnetic fields in both classical and quantum contexts
USEFUL FOR

Physicists, students of quantum mechanics, and anyone interested in the interplay between quantum theory and special relativity, particularly in understanding the energy dynamics of particles and their fields.

ghotra
Messages
53
Reaction score
0
The energy of an electron at rest is mc^2.

1) Can an electron even be at rest? It seems that the answer is "no" by the uncertainty principle. Thus, it would seem that every electron has energy greater than mc^2. Is this a correct statement?

2) Is this a classical quantity? That is, if I were to determine the electric and magnetic fields of an electron quantum mechanically, and if I integrated the square of the electric field to determine the total energy stored in those fields, would I get E = mc^2 as an answer.

Basically, I am wondering which (if any) of these statements is true.

E = E_rest + E_fields

E = E_rest = E_fields

Can we say: An electron has no energy---rather, it's fields due.

Anyway, this wasn't super organized, but I hope my question is clear. I am trying to resolve (if it needs to be) E = mc^2 with quantum mechanics and I don't understand how the energy of a particle relates to the field that it creates.
 
Physics news on Phys.org
The way that you resolve special relativity with quantum mechanics is a rather complicated process (well, not horridly complicated, but unpleasant to say the least).

Essentially, the energy of any particle is frame-dependent. At the moment, my computer has no kinetic energy because we aren't moving relative to each other. Once I dash out the door for a beer run I could say that the computer has kinetic energy relative to my frame of reference.

You can have non-violation of the Heisenberg principle by having a particle in a momentum eigenstate. Only, in special relativity, we contend with four-vectors, such as
\mathbf{p} = (p^0, p^1, p^2, p^3)
where p^0 represents the energy component of the momentum four-vector. So let's suppose that we start out with a particle in a four-momentum eigenstate. The Poincare Group clearly defines how this state transforms under translations, boosts, and rotations. In our particular case a translation has no effect on the momentum (had it been in a position eigenstate that would be different). However, the four-momentum that defines the state vector transforms according to the Lorentz transformations. Thus, out pops a new momentum value and the state measured will be different between two reference frames that are moving relative to each other, call them \mathcal{O} and \mathcal{O}'.

As for your other questions, the electric field energy is distinct from the kinetic energy of the electron, even though the source is different. Energy is a frame-dependent quantity (as you can see up above), and so the energy of the electron will be different in differing frames. Furthermore, if I'm moving relative to the electron, I will detect a new magnetic field that has formed and which has energy. This arises out of the Lorentz invariance of charge. So I'll have an electric field (which will in general be time-varying) and a magnetic field that an observer in the rest frame of the electron won't see.

I guess to sum up my answer, energy depends largely on what frame of reference you are in.
 
That all sounds good. So let me state this:

1) An electon and I are in the same inertial frame.
2) The electron is in a momentum eigenstate.

Thus,

1) The electon is a "rest".
2) The energy of the electron is E = mc^2
3) The energy stored is the fields does not contribute to the energy of the electron.

Is this correct?
 
I believe so, yes. Maybe someone else might check my work. I just note that
E^2 = p^2 + m^2
in naturalized units (i.e. c = 1). Just keep that in mind.
 
Yes, QM allows an electron to be at rest, that is it can be in a sate wih p=0. Note, however, that a localized state, say x=0, requires all momenum eigenstates to be present -- due to the Fourier expansion of the delta function.

The energy in the electron's field is certainly non-zero; classically the local energy density of E*E + B*B does not vanish, also true in QM. Frankly we don't have a clue about a "bare" electron -- is the electron's mass due entirely to its fields, or does it have some residual mass due to who knows what. (See any advanced E&M book, and any QED or QFT dealing wih renormalization; or Dirac's QM book)

Regards,
Reilly Atkinson
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
7K