- #1
- 14
- 0
how Energy time uncertainty principle account for the broadening of a level????????
thanks in advance
thanks in advance
Where on Earth did you get that idea. Energy conservation is one of the cornerstones of physics, and holds exactly, even in quantum mechanics. You cannot violate it, even if you're quick! If an instance of an excited state has slightly less energy, it just means that slightly more energy was transferred to another particle when the state was excited.We can violate conservation of energy by amount ΔE provided we do it for less than Δt=h/2πΔE.
Where on Earth did you get that idea. Energy conservation is one of the cornerstones of physics, and holds exactly, even in quantum mechanics. You cannot violate it, even if you're quick! If an instance of an excited state has slightly less energy, it just means that slightly more energy was transferred to another particle when the state was excited.
That's a very nice example, I'll bear that in mind.However - sometimes these intermediate calculations turn out to have a reality about them - like with monochromatic reflection: it is possible to get a stronger reflection by removing most of the mirror since the law of reflection only works on average. The intermediate calculation is to sum the phases over every possible reflection point even where the angles are not equal. We find that the many of the phases cancel each other out - but if we only allow reinforcing terms (by removing the others), then the reflection gets stronger. Ergo: the extra paths in the intermediate calculation are occasionally traversed (or something).