Sherlock said:
The statement in question was that the cos^2 theta formula
is incompatible with hidden variables. It isn't. If you consider just
the individual results, then you can write the probability of
detection as P = cos^2 |a - lambda|, where a is the setting
of an individual polarizer and lambda is the emission polarization.
vanesch said:
Well, yes, that's exactly what I did. But apparently now you
assume EQUAL polarizations (lambda) at both sides, and not
OPPOSITE polarizations. So be it.
For a GIVEN lambda (unknown, I agree), you say that, if we put up a polarizer at Alice in direction a, it has a probability equal to cos^2(a-lambda) of clicking (assuming it "100% efficient" ; we'll come to that later). This means then also, I would think, that we have a probability cos^2(a-lambda) of clicking at Bob's place if he also puts his polarizer in direction a, right ?
And if Bob puts his polarizer in direction b, I assume that his probability of clicking for the same lambda is cos^2(b-lambda), right ?
Of course, specifying individual probabilities doesn't give us the joint distribution, except if you say that these probabilities are independent. But normally, what happens at Bob is independent of what happens at Alice, once lambda is given. So the JOINT PROBABILITY that the detector (in direction a) at Alice clicks, and that within the same time interval, the detector (in direction b at Bob) clicks is then given by
P(a,b,lambda) = cos^2(a-lambda) cos^2(b-lambda)
If that is not the case, then give me your joint probability for a given lambda.
First, the statement I was replying to was that local hidden
variables don't *exist*. I disagreed. They do exist, and
it can be demonstrated by looking at *individual* results.
Lambda is what's being analyzed in the individual context.
Regarding the *joint* probability, it doesn't depend
on a given lambda. That is, lambda isn't what's being
analyzed. What's being analyzed in the combined
context is a global constant. Lambda isn't the
global *constant*, so a description of joint
probability (such as what you evaluated) based on
lambda might give the correct functional form, but a
reduced spread (as you pointed out).
Ok, so, in the joint context, the polarizers, taken
together, are analyzing the degree to which photon_1
and photon_2 of any given pair are polarized identically.
So, if A records a photon detection, then the
probability of detection at B with the polarizers
aligned is 1 -- and the probability of detection
at B varies as cos^2 |a - b|. Isn't this
just standard quantum optics?
But where is the identical polarization produced?
As far as we *know* it *could* be produced at
the polarizers or detectors. But there's
an explanation that fits the observations,
and doesn't require the existence of undetectable
superluminal 'influences'.
Does quantum theory have an answer for the
question of where the identical polarization
is produced?
As far as I can tell, you could
interpret the projection as being due to local
or nonlocal transitions. That is, you *can*
assume that the identical polarization of
photon_1 and photon_2 is produced via the
emission process, and this assumption isn't
contradicted by the data. It also isn't, imo,
contradicted by Bell's analysis which deals
with the variable lambda. It also fits the
original idea of entanglement being due
to past interaction or common source.
Since interpretations of Bell's analysis
seem to be the only thing that superluminality
(wrt to associated experiments) has going
for it, it doesn't seem to me to be the
most reasonable option.
Regarding your statement that, using a wave
picture for light, a detector sitting behind
perpendicularly crossed linear polarizers has a >0
probability of registering a detection:
I don't think that's so. Anyway, I'm not
sure what that has to do with what we're
talking about -- which is, I thought, the
nature of entanglement in general, and in Bell/EPR
experiments in particular.