MHB Epsilon Delta Proof Piecewise function

Click For Summary
The discussion revolves around the application of the triangle inequality in the context of Epsilon-Delta proofs for piecewise functions. Participants clarify the manipulation of absolute values, particularly in the expression involving limits and the Heaviside function. A contradiction arises when attempting to show that the Heaviside function does not exist at t=0, as the derived inequalities lead to an impossible conclusion. The conversation also touches on different interpretations of the triangle inequality and absolute value properties. Overall, the thread emphasizes the importance of careful manipulation of expressions in limit proofs.
Dethrone
Messages
716
Reaction score
0
https://answers.yahoo.com/question/index?qid=20130915100124AAK4JAQ

I do not understand how they got:
"1 = |(1 plus d/2 - L) - (d/2 - L)| <= |1 plus d/2 - L| plus |d/2 - L| < 1/4 plus 1/4 = 1/2, "

Shouldn't it be $|(1+ \frac{\delta}{2} -L) + (\frac{\delta}{2} -L)|$, not $|(1+ \frac{\delta}{2} -L) - (\frac{\delta}{2} -L)|$
 
Physics news on Phys.org
Rido12 said:
https://answers.yahoo.com/question/index?qid=20130915100124AAK4JAQ

I do not understand how they got:
"1 = |(1 plus d/2 - L) - (d/2 - L)| <= |1 plus d/2 - L| plus |d/2 - L| < 1/4 plus 1/4 = 1/2, "

Shouldn't it be $|(1+ \frac{\delta}{2} -L) + (\frac{\delta}{2} -L)|$, not $|(1+ \frac{\delta}{2} -L) - (\frac{\delta}{2} -L)|$

No, $|(1 + \frac{\delta}{2} - L) + (\frac{\delta}{2} - L)| = |1 + \delta - 2L|$, not $1$. Adding and subtracting $\frac{d}{2} - L$ gives

$$1 = 1 + (\frac{\delta}{2} - L) - (\frac{\delta}{2} - L) = (1 + \frac{\delta}{2} - L) - (\frac{\delta}{2} - L)$$,

and thus

$$ 1 = |(1 + \frac{\delta}{2} - L) - (\frac{\delta}{2} - L)|$$.
 
I agree, but how was he able to continue with the triangle inequality?

I thought it was $|x+y| \le |x| + |y|$, so if they rewrote it as $|x-y|$, how is $|x-y|\le |x|+|y|$?
 
They're trying to derive a contradiction. I presume you have followed the steps they took in order to deduce $\left | \delta/2 + 1 - L \right | < 4$ from the hypothesis of having a limit?

What they did next was sheer trickery. Note that $(1 + \delta/2 - L) - (\delta/2 - L) = 1$, thus,

$$1 = \left | \left(1 + \frac{\delta}{2}-L \right) - \left ( \frac{\delta}{2} - L \right) \right | \leq \left | 1 + \frac{\delta}{2} - L \right | +\left | \frac{\delta}{2} - L \right |$$

Which follows from the triangle ineq. But then we have deduced that

$$\left | 1 + \frac{\delta}{2} - L \right | +\left | \frac{\delta}{2} - L \right | \leq \frac14 + \left | 1 + \frac{\delta}{2} - L \right | < \frac14 + \frac14 = \frac12$$

Combining the two above, $1 < 1/2$, a contradiction.

- - - Updated - - -

Rido12 said:
I agree, but how was he able to continue with the triangle inequality?

I thought it was $|x+y| \le |x| + |y|$, so if they rewrote it as $|x-y|$, how is $|x-y|\le |x|+|y|$?
$$|x-y| = |x + (-y)| \leq |x| + |-y| = |x| + |y|$$
 
Oh okay! It's just that my professor has another formula for $|x-y|$ that is different, but it matters not.

Suppose we want to show that the Heaviside function does not exist at $t=0$.

Heaviside function is the following:
$$H(t)=\begin{cases}1, & t\ge 0 \\[3pt] 0, & t<0 \\ \end{cases}$$

Following the same method, assume that $\epsilon = 1/2$ is imposed, such that we want to find $0<|t|<\delta$ such that $|H(t) -L|<1/2$. If we pick $t =\delta /2$ which satisfies, we have $|1-L|<1/2$, similarly picking $t=-\delta / 2$, we have $|-L|<1/2$.

By the triangle inequality, we find that:
$1=|1-L-(-L)|\le |1-L|+|L| < 1/2 + 1/2 = 1$

Contradiction because 1 is not less than 1. Is that correct? Do I have to say anything about $\delta$ = min{${\text{something}}$}?
 
Last edited:
That looks good to me. (Yes)
 
Rido12 said:
Oh okay! It's just that my professor has another formula for $|x-y|$ that is different, but it matters not.

You mean the reverse triangle inequality, $||x| - |y|| \le |x - y|$?
 
Exactly, but are those external absolute values necesary? My prof left it out, he said for any real numbers $x$ and $y$:
$|x-y|\ge |x|-|y|$
 
What I have implies your inequality, but keep in mind that $|x| - |y|$ may be negative.